People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tenhu, Heikki
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersions
- 2023Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersions
- 2022Well-dispersed clay in photopolymerized poly(ionic liquid) matrixcitations
- 2020Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration techniquecitations
- 2018Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration techniquecitations
- 2017Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycationscitations
- 2016Rheological properties of thermoresponsive nanocomposite hydrogelscitations
- 2016AuNP-Polymeric Ionic Liquid Composite Multicatalytic Nanoreactors for One-Pot Cascade Reactionscitations
- 2016Water-dispersible silica-polyelectrolyte nanocomposites prepared via acid-triggered polycondensation of silicic acid and directed by polycations.citations
- 2016Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycationscitations
- 2016AuNP−polymeric ionic liquid composite multicatalytic nanoreactors for one-pot cascade reactionscitations
- 2013pH dependent polymer surfactants for hindering BSA adsorption to oil-water interface
- 2013Thermoresponsiveness of PDMAEMA. Electrostatic and stereochemical effectscitations
- 2013Imidazolium-Based Poly(ionic liquid)s as New Alternatives for CO2 Capture.citations
- 2012Polymer-Modulated Optical Properties of Gold Solscitations
- 2012Polymer-Modulated Optical Properties of Gold Solscitations
- 2012IR-sintering of ink-jet printed metal-nanoparticles on papercitations
- 2012Screening of the effect of biocidal agents released from poly (acrylic acid) matrices on mould growthcitations
- 2012Crystal morphology modification by the addition of tailor-made stereocontrolled poly(N-isopropyl acrylamide)citations
- 2011Characterization of Water-Dispersible n-Type Poly(benzimidazobenzophenanthroline) Derivatives.citations
- 2009Poly(ethylene imine) and Tetraethylenepentamine as Protecting Agents for Metallic Copper Nanoparticlescitations
- 2009Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerization: Blends with poly(BuA-co-MMA).citations
- 2009Tuning the structure of thermosensitive gold nanoparticle monolayerscitations
- 2009Rheological properties of associative star polymers in aqueous solutionscitations
- 2009Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerizationcitations
- 2009Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topologycitations
- 2009Association behavior and properties of copolymers of perfluorooctyl ethyl methacrylate and eicosanyl methacrylatecitations
- 2008Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEMcitations
- 2007Metallic nanoparticles in a polymeric matrix
- 2007Metallic nanoparticles in a polymeric matrix:Electrical impedance switching and negative differential resistance
- 2007Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrenecitations
- 2006A New method for measuring free drug concentrationcitations
- 2005Physical Properties of Aqueous Solutions of a Thermo-Responsive Neutral Copolymer and an Anionic Surfactantcitations
- 2005Association in Aqueous Solutions of a Thermoresponsive PVCL-g-C11EO42 Copolymer.citations
- 2004Complexation of DNA with Poly(methacryl oxyethyl trimethylammonium chloride) and Its Poly(oxyethylene) Grafted Analogue.citations
Places of action
Organizations | Location | People |
---|
article
Physical Properties of Aqueous Solutions of a Thermo-Responsive Neutral Copolymer and an Anionic Surfactant
Abstract
Aq. mixts. of the anionic sodium dodecyl sulfate (SDS) surfactant and thermo-responsive poly(N-vinylcaprolactam) chains grafted with ω-methoxy poly(ethylene oxide) undecyl α-methacrylate (PVCL-g-C11EO42) have been characterized using turbidimetry and small-angle neutron scattering (SANS).Turbidity measurements show that the addn. of SDS to a dil. aq. copolymer soln. (1.0 wt%) induces an increase of the cloud point (CP) value and a decrease of the turbidity at high temps.In parallel, SANS results show a decrease of both the av. distance between chains and the global size of the objects in soln. at high temps. as the SDS concn. is increased.Combination of these findings reveals that the presence of SDS in the PVCL-g-C11EO42 solns. (1.0 wt%) promotes the formation of smaller aggregates and, consequently, leads to a more homogeneous distribution of the chains in soln. upon heating of the mixts.Moreover, the SANS data results show that the internal structure of the formed aggregates becomes more swollen as the SDS concn. increases.On the other hand, the addn. of moderate amts. of SDS (up to 4 mm) to a semidilute copolymer soln. (5.0 wt%) gives rise to a more pronounced aggregation as the temp. rises; turbidity and SANS studies reveal in this case a decrease of the CP value and an increase of the scattered intensity at low q.The overall picture that emerges from this study is that the degree of aggregation can be accurately tuned by varying parameters such as the temp., level of surfactant addn., and polymer concn. [on SciFinder(R)]