Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parker, Stephen R. W.

  • Google
  • 1
  • 3
  • 81

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylinder81citations

Places of action

Chart of shared publication
Day, James P. R.
1 / 3 shared
Bain, Colin D.
1 / 6 shared
Campbell, Richard A.
1 / 24 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Day, James P. R.
  • Bain, Colin D.
  • Campbell, Richard A.
OrganizationsLocationPeople

article

External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylinder

  • Day, James P. R.
  • Parker, Stephen R. W.
  • Bain, Colin D.
  • Campbell, Richard A.
Abstract

<p>External reflection Fourier transform infrared spectroscopy (ER-FTIRS) has been used to study the adsorption of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) at the air-water interface under nonequilibrium conditions. An overflowing cylinder (OFC) was used to generate a continually expanding liquid surface with a surface age of 0.1-1 s. ER-FTIR spectra were acquired by a single bounce of p- or s-polarized radiation from the flowing surface of the OFC. The C-H stretching region of CTAB spectra was analyzed both by subtraction of a reference spectrum of pure water and by a chemometric technique known as target factor analysis (TFA). The TFA method is shown to give lower scatter in the weight of the component assignable to the adsorbed CTAB monolayer and to permit analysis of spectra at lower bulk surfactant concentrations. The surface sensitivity of ER-FTIRS is demonstrated both experimentally and by theoretical modeling. Modeling shows that surfactant adsorbed at the surface and dissolved in the bulk solution can be distinguished by reflection spectroscopy but also highlights potential errors that can arise from the neglect of the bulk surfactant contribution to the ER-FTIR spectra. Polarized spectra are consistent with an isotropic distribution of transition dipole moments of the hydrocarbon chains in CTAB, Component weights of the CTAB monolayer determined by TFA are compared with an independent determination of values of the dynamic surface excess, Γ<sub>dyn</sub>, by neutron reflection and ellipsometry. The relationship between the component weights and Γ<sub>dyn</sub> shows a small but significant deviation from linearity. Possible explanations for this deviation are discussed. The feasibility of using TFA to deconvolute ER-FTIR spectra of mixtures of hydrocarbon surfactants is demonstrated.</p>

Topics
  • impedance spectroscopy
  • surface
  • ellipsometry
  • isotropic
  • Fourier transform infrared spectroscopy
  • surfactant