Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Foster, Jamie Michael

  • Google
  • 6
  • 32
  • 1129

University of Portsmouth

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2018Systematic derivation of a surface polarization model for planar perovskite solar cells28citations
  • 2018A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells68citations
  • 2017Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells622citations
  • 2017A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodes15citations
  • 2015Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer-layer377citations
  • 2015Phosphonic anchoring groups in organic dyes for solid-state solar cells19citations

Places of action

Chart of shared publication
Courtier, N. E.
2 / 2 shared
Richardson, G.
3 / 3 shared
Okane, S. E. J.
1 / 1 shared
Walker, A. B.
1 / 1 shared
Petrozza, Annamaria
2 / 28 shared
Saliba, Michael
1 / 33 shared
Matsui, Taisuke
1 / 2 shared
Tress, Wolfgang
1 / 11 shared
Gräztel, Michael
1 / 1 shared
Roose, Bart
1 / 11 shared
Nazeeruddin, Mohammad K.
1 / 1 shared
Ball, James M.
1 / 8 shared
Angelis, Filippo De
1 / 30 shared
Turren-Cruz, Silver-Hamill
1 / 2 shared
Domanski, Konrad
1 / 3 shared
Hagfeldt, Anders
1 / 20 shared
Abate, Antonio
3 / 57 shared
Mine, Nicolas
1 / 2 shared
Richardson, Giles
2 / 11 shared
Steiner, Ullrich
2 / 42 shared
Correa-Baena, Juan-Pablo
1 / 10 shared
Carmona, Cristina Roldan
1 / 1 shared
Protas, Bartosz
1 / 1 shared
Chapman, S. J.
1 / 1 shared
Snaith, Henry J.
2 / 58 shared
Zhang, Wei
1 / 54 shared
Guarnera, Simone
1 / 3 shared
Wojciechowski, Konrad
1 / 9 shared
Sadhanala, Aditya
1 / 29 shared
Franco, Santiago
1 / 2 shared
Pérez-Tejada, Raquel
1 / 2 shared
Ordunac, Jesús
1 / 1 shared
Chart of publication period
2018
2017
2015

Co-Authors (by relevance)

  • Courtier, N. E.
  • Richardson, G.
  • Okane, S. E. J.
  • Walker, A. B.
  • Petrozza, Annamaria
  • Saliba, Michael
  • Matsui, Taisuke
  • Tress, Wolfgang
  • Gräztel, Michael
  • Roose, Bart
  • Nazeeruddin, Mohammad K.
  • Ball, James M.
  • Angelis, Filippo De
  • Turren-Cruz, Silver-Hamill
  • Domanski, Konrad
  • Hagfeldt, Anders
  • Abate, Antonio
  • Mine, Nicolas
  • Richardson, Giles
  • Steiner, Ullrich
  • Correa-Baena, Juan-Pablo
  • Carmona, Cristina Roldan
  • Protas, Bartosz
  • Chapman, S. J.
  • Snaith, Henry J.
  • Zhang, Wei
  • Guarnera, Simone
  • Wojciechowski, Konrad
  • Sadhanala, Aditya
  • Franco, Santiago
  • Pérez-Tejada, Raquel
  • Ordunac, Jesús
OrganizationsLocationPeople

article

Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer-layer

  • Petrozza, Annamaria
  • Foster, Jamie Michael
  • Richardson, G.
  • Snaith, Henry J.
  • Abate, Antonio
  • Zhang, Wei
  • Guarnera, Simone
Abstract

Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode’s metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous “buffer layer” comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation.

Topics
  • nanoparticle
  • porous
  • perovskite
  • impedance spectroscopy