People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stephens, Ifan Erfyl Lester
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2018Scalable Synthesis of Carbon-Supported Platinum–Lanthanide and −Rare-Earth Alloys for Oxygen Reductioncitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2015Synchrotron Based Structural Investigations of Mass-Selected PtxGd Nanoparticles and a Gd/Pt(111) Single Crystal for Electrochemical Oxygen Reduction
- 2015Controlling the Activity and Stability of Pt-Based Electrocatalysts By Means of the Lanthanide Contraction
- 2015What Is the Optimum Strain for Pt Alloys for Oxygen Electroreduction?
- 2014Oxygen Evolution on Model Well-Characterised Mass-Selected Nanoparticles of RuOx
- 2014Understanding the Oxygen Reduction Reaction on a Y/Pt(111) Single Crystal
- 2014Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodescitations
- 2011Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloyingcitations
Places of action
Organizations | Location | People |
---|
article
Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes
Abstract
Sputter deposition of 50 nm thick NiO films on p<sup>+</sup>–n-Si and subsequent treatment in an Fe-containing electrolyte yielded highly transparent photoanodes capable of water oxidation (OER) in alkaline media (1 M KOH) with high efficiency and stability. The Fe treatment of NiO thin films enabled Si-based photoanode assemblies to obtain a current density of 10 mA/cm2 (requirement for >10% efficient devices) at 1.15 V versus RHE (reversible hydrogen electrode) under red-light (38.6 mW/cm2) irradiation. Thus, the photoanodes were harvesting ∼80 mV of free energy (voltage), which places them among the best-performing Si-based photoanodes in alkaline media. The stability was proven by chronoamperometry at 1.3 V versus RHE for 300 h. Furthermore, measurements with electrochemical quartz crystal microbalances coupled with ICP-MS showed minor corrosion under dark operation. Extrapolation of the corrosion rate showed stability for more than 2000 days of continuous operation. Therefore, protection by Fe-treated NiO films is a promising strategy to achieve highly efficient and stable photoanodes.