People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Campbell, Richard A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant:Transition from synergy to competition
- 2021Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterningcitations
- 20203D texturing of the air–water interface by biomimetic self-assemblycitations
- 2020Synergy, competition, and the “hanging” polymer layer:Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2019Polydopamine layer formation at the liquid – gas interfacecitations
- 2016Smart nanogels at the air/water interfacecitations
- 2016Smart nanogels at the air/water interface:Structural studies by neutron reflectivitycitations
- 2015On the formation of dendrimer/nucleolipids surface films for directed self-assemblycitations
- 2013New method to predict the surface tension of complex synthetic and biological polyelectrolyte/surfactant mixturescitations
- 2011Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometrycitations
- 2011Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometrycitations
- 2011Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium Chloride)/Sodium Dodecyl Sulfate at the Air-Water Interface Studied by Neutron Reflectometrycitations
- 2010New perspective on the cliff edge peak in the surface tension of oppositely charged polyelectrolyte/surfactant mixturescitations
- 2010New perspective on the cliff edge peak in the surface tension of oppositely charged polyelectrolyte/surfactant mixturescitations
- 2010New Perspective on the Cliff Edge Peak in the Surface Tension of Oppositely Charged Polyelectrolyte/Surfactant Mixturescitations
- 2008Competitive adsorption of neutral comb polymers and sodium dodecyl sulfate at the air/water interfacecitations
- 2007Dynamics of adsorption of an oppositely charged polymer-surfactant mixture at the air-water interfacecitations
- 2005External reflection fourier transform infrared spectroscopy of surfactants at the air-water interface:Separation of bulk and adsorbed surfactant signalscitations
- 2005External reflection fourier transform infrared spectroscopy of surfactants at the air-water interfacecitations
- 2004External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylindercitations
Places of action
Organizations | Location | People |
---|
article
New perspective on the cliff edge peak in the surface tension of oppositely charged polyelectrolyte/surfactant mixtures
Abstract
<p>We present how dramatically the nonequilibrium nature of an oppositely charged polyelectrolyte/surfactant mixture can affect the interfacial properties. We show for the first time that the cliff edge peak in the surface tension of the poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate system is produced as a direct result of depletion of surface-active material from the bulk solution due to a slow precipitation process in the phase separation region. Simple illustrations are given of how to control the production of the peak, to eliminate the feature for equivalent aged solutions through the use of different sample handling methods, and even to change its characteristics at short surface ages. The potential to tune nonequilibrium, steady-state interfacial properties for such strongly associating systems is clearly demonstrated. We propose that our findings in general may be applicable to a broad range of mixtures containing surfactants and oppositely charged macromolecules such as polymers, proteins, and DNA.</p>