People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miettunen, Kati
University of Turku
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Simplifying perovskite solar cell fabrication for materials testing : how to use unetched substrates with the aid of a three-dimensionally printed cell holder
- 2023Comparison of experimental separation methods for silicon solar panels
- 2023Bottlenecks in Perovskite Solar Cell Recycling
- 2022Encapsulation of commercial and emerging solar cells with focus on perovskite solar cellscitations
- 2022Encapsulation of commercial and emerging solar cells with focus on perovskite solar cellscitations
- 2022Plant-Based Structures as an Opportunity to Engineer Optical Functions in Next-Generation Light Managementcitations
- 2022Plant-Based Structures as an Opportunity to Engineer Optical Functions in Next-Generation Light Managementcitations
- 2019Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cellscitations
- 2019Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cellscitations
- 2018Biobased aerogels with different surface charge as electrolyte carrier membranes in quantum dot-sensitized solar cellcitations
- 2018Application of dye-sensitized and perovskite solar cells on flexible substratescitations
- 2016Quasi-solid electrolyte with polyamidoamine dendron modified-talc applied to dye-sensitized solar cellscitations
- 2014Low Cost Ferritic Stainless Steel in Dye Sensitized Solar Cells with Cobalt Complex Electrolytecitations
- 2010Stability of Dye Solar Cells with Photoelectrode on Metal Substratescitations
- 2009Segmented Cell Design for Improved Factoring of Aging Effects in Dye Solar Cellscitations
- 2009Nanostructured dye solar cells on flexible substrates-Reviewcitations
Places of action
Organizations | Location | People |
---|
article
Segmented Cell Design for Improved Factoring of Aging Effects in Dye Solar Cells
Abstract
<p>A new segmented cell design was applied to study the aging of dye solar cell with stainless steel (StS) photoelectrode substrate, in particular the role of electrolyte in the degradation. Photovoltaic characterization indicated that StS photoelectrode cells are subjected to rapid (within hours or days) performance degradation that did not occur in the StS counter electrode cells. Other complementary techniques, open circuit voltage decay (OCVD) and electrochemical impedance spectroscopy (EIS), showed changes in the recombination at the photoelectrode/electrolyte interface. With the segmented cell method, we confirmed that the electrolyte was not contaminated by the StS nor was it subject to other significant changes related to the rapid degradation.</p>