Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Evangelisti, M.

  • Google
  • 1
  • 8
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Grafting derivatives of Mn-6 single-molecule magnets with high anisotropy energy barrier on Au(111) surface34citations

Places of action

Chart of shared publication
Biagi, R.
1 / 2 shared
Milios, C. J.
1 / 1 shared
Pennino, U. Del
1 / 1 shared
Corradini, V.
1 / 3 shared
Jones, L. F.
1 / 2 shared
Brechin, Euan K.
1 / 21 shared
Moro, F.
1 / 2 shared
Renzi, V. De
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Biagi, R.
  • Milios, C. J.
  • Pennino, U. Del
  • Corradini, V.
  • Jones, L. F.
  • Brechin, Euan K.
  • Moro, F.
  • Renzi, V. De
OrganizationsLocationPeople

article

Grafting derivatives of Mn-6 single-molecule magnets with high anisotropy energy barrier on Au(111) surface

  • Biagi, R.
  • Milios, C. J.
  • Pennino, U. Del
  • Corradini, V.
  • Jones, L. F.
  • Evangelisti, M.
  • Brechin, Euan K.
  • Moro, F.
  • Renzi, V. De
Abstract

<p>We study the magnetic proper-ties of two new functionalized single-molecule magnets belonging to the Mn-6 family (general formula [(Mn6O2)-O-III(R-sao)(6)(O2C-th)(2)L-4-(6)], where R = H (1) or Et (2), HO2C-th = 3-thiophene carboxylic acid, L = EtOH, H2O and saoH(2) is salicylaldoxime) and their grafting on the Au(111) surface. Complex 1 exhibits spin ground-state S = 4, as the result of ferromagnetic coupling between the two antiferromagnetic Mn-3(III) triangles, while slight structural changes in complex 2, switch the dominant magnetic exchange interactions from anti- to ferromagnetic, enhancing the spin ground-state to S = 12 and, consequently, the effective energy barrier for the relaxation of magnetization. Direct-current and alternating-current magnetic susceptibility measurements show that the functionalized complexes preserve the main magnetic properties of the cot-responding not-functionalized Mn-6 clusters (i.e., total spin value and magnetic behavior as a function of temperature), though a reduction of the anisotropy barrier is observed in complex 2. For both complexes, the -O2C-th functionalization allows the direct grafting on Au(111) surface by liquid-phase deposition. X-ray photoemission spectroscopy demonstrates that the stoichiometry of the molecular cores is preserved after grafting. Scanning tunneling microscopy (STM) reveals a sub-monolayer distribution of isolated clusters with a slightly higher coverage for complex 1. The cluster stability in the STM images and the S-2p energy positions demonstrate, for both derivatives, the strength of the grafting with the gold surface.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • cluster
  • phase
  • gold
  • strength
  • susceptibility
  • functionalization
  • magnetization
  • scanning tunneling microscopy
  • carboxylic acid