People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zygadło-Monikowska, Ewa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Magnesium tetraorganyl derivatives of group 13 metals as intermediate products in the synthesis of group 13 metal alkyls and arylscitations
- 2017Synthesis and properties of new carboxyborate lithium salts as electrolytes for lithium-ion batteriescitations
- 2015Synthesis and characterization of lithium-salt complexes with difluoroalkoxyborates for application as lithium electrolytescitations
- 2015Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium saltscitations
- 2014Lithium electrolytes based on modified imidazolium ionic liquidscitations
- 2013Benzoxaborolate ligands in group 13 metal complexescitations
- 2011Synthesis and characterization of new trifluoroalkoxyborates lithium salts of ionic liquid propertiescitations
- 2008Influence of plasticizer type on the properties of polymer electrolytes based on chitosancitations
- 2004Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium saltscitations
- 2003Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexescitations
- 2000The effect of solvent and proton donor type on the conductivity and physico-chemical properties of poly(vinylidene fluoride)-based proton-conducting gel electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Influence of plasticizer type on the properties of polymer electrolytes based on chitosan
Abstract
Polymer electrolytes were obtained by the casting technique from a solution containing chitosan, hydrochloric acid, and plasticizer such as glycerol, ethylene glycol, and sorbitol. The transparent membranes with good ionic conductivity properties were characterized by impedance and UV−vis spectroscopies, thermal analysis (DSC), and X-ray diffraction. The best ionic conductivity values of 9.5 × 10−4 S cm−1 at room temperature and 2.5 × 10−3 S cm−1 at 80 °C were obtained for the sample containing 59 wt% of glycerol and an equimolar amount of HCl with respect to NH2 groups in chitosan. The temperature dependence of the ionic conductivity exhibits an Arrhenius behavior with activation energy of 16.6 kJ mol−1. The thermal analysis indicates that both glass transition temperature (−87 °C) and crystallinity are low for this electrolyte. The samples with 13 wt% of LiCF3SO3 showed that the ionic conductivity values of 2.2 × 10−5 S cm−1 at room temperature and 4 × 10−4 S cm−1 at 80 °C are predominantly amorphous and showed a low glass transition temperature of about −73 °C.