People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vickridge, Ian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Exploring OH incorporation pathways in pulsed laser deposited EuOOH thin films
- 2021The carbon and hydrogen contents in ALD-grown ZnO films define a narrow ALD temperature windowcitations
- 2020Harnessing Atomic Layer Deposition and Diffusion to Spatially Localize Rare-Earth Ion Emitterscitations
- 2020Low resistivity amorphous carbon-based thin films employed as anti-reflective coatings on coppercitations
- 2017XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutantscitations
- 2015Rutherford Backscattering Spectrometry analysis of iron-containing Bi2Se3 Topological Insulator thin filmscitations
- 2014Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistorscitations
- 2011Ferromagnetism in Ga0.90Mn0.10As1-yPy: From the metallic to the impurity band conduction regimecitations
- 2008Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRAcitations
- 2007Ageing of V2O5 thin films induced by Li intercalation multi-cyclingcitations
- 2006TaSiN diffusion barriers deposited by reactive magnetron sputteringcitations
- 2005Characterization of SiC thin film obtained by magnetron reactive sputtering : IBA, IR and Raman studies
- 2005Influence of substrate temperature on growth of nanocrystalline silicon carbide by reactive magnetron sputteringcitations
- 2005Control of the reactivity at a metal/silica interfacecitations
- 2004Characterization of SiC thin film obtained by magnetron reactive sputtering : IBA, IR and Raman studies
- 2004Study of thin hafnium oxides deposited by atomic layer depositioncitations
- 2002Oxygen isotopic exchange occurring during dry thermal oxidation of 6H SiCcitations
Places of action
Organizations | Location | People |
---|
article
Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA
Abstract
XPS, RBS, and NRA have been combined to study the mechanisms of Li-ion electrochemical intercalation in MoO3 thin films prepared by thermal oxidation of molybdenum metal. A direct anaerobic and anhydrous transfer was used from a glovebox (O-2 and H2O < 1 ppm), where the samples were electrochemically treated at selected potentials between 1.7 and 3.2 V versus Li+/Li, to the XPS analysis chamber. The thermal oxide film grown at T = 450 +/- 10 degrees C and P(O-2) = 100 +/- 10 mbar for t = 5 min consisted of a 20 nm thick MoO3 outer layer overlying a 13 nm thick inner layer of lower oxides (Mo2O5 and MoO2). Combined RBS/NRA analysis allowed the dosing of intercalated lithium and the determination of the composition of the lithiated phases. Li0.50MoO3, Li1.20MoO3, and Li0.21MoO3 were obtained after intercalation at 2.58 and 1.73 V and deintercalation at 3.2 V, respectively, showing that similar to 1.2 mol of Li can be initially intercalated in the potential range 1.7-3.2 V (capacity of 223 mA h/g), and similar to 0.2 mol of Li per mol of MoO3 is trapped in the oxide matrix after the initial stages of intercalation. The XP Mo3d core level spectra evidenced the reduction of Mo6+ ions to Mo5+ ions after intercalation at 2.58 V and further to Mo5+ and Mo4+ ions after intercalation at 1.73 V with resulting Mo6+/Mo5+/Mo4+ ratios of 53:47:00 at % and 37:39:24 at %, respectively. Reoxidation of molybdenum is observed after deintercalation but 40 at % Mo5+ subsist at 3.2 V due to the trapping of lithium strongly bonded to the oxide matrix. The Li1s core level (at E-B = 55.80 eV) is most intense at 1.73 V and does not vanish at 3.2 V. Broadening of the Mo3d core level peaks are assigned to the distortion of the oxide matrix. Changes of the electronic structure after intercalation result from the occupation of the Mo4d states (at E-B = 1.0 eV) originally empty in the pristine oxide. The XP C1s and O1s core level spectra show the irreversible formation of a solid electrolyte interphase (SEI) layer including lithium carbonate and Li-alkoxides.