Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Segura, Jl

  • Google
  • 1
  • 4
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Synthesis and photophysical properties of conjugated polymers with pendant 9,10-anthraquinone units22citations

Places of action

Chart of shared publication
Gómez, R.
1 / 4 shared
Veldman, D. Dirk
1 / 3 shared
Blanco, R.
1 / 1 shared
Janssen, René A. J.
1 / 151 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Gómez, R.
  • Veldman, D. Dirk
  • Blanco, R.
  • Janssen, René A. J.
OrganizationsLocationPeople

article

Synthesis and photophysical properties of conjugated polymers with pendant 9,10-anthraquinone units

  • Gómez, R.
  • Veldman, D. Dirk
  • Segura, Jl
  • Blanco, R.
  • Janssen, René A. J.
Abstract

We have synthesized and investigated the photophysical properties of a series of electron-donor conjugated copolymers with pendant electron-acceptor units. The copolymers consist of diethynyl-1,4-phenylene, fluorene, or phenylene rings alternating with a phenylene unit bearing a pendant 9,10-anthraquinone moiety. The pendant donor-acceptor polymers were designed to have different optical p-p* band gaps, while the oxidation potential of the polymer backbone remains approximately constant in the series. The reduction potential of the donor-acceptor polymers is associated with the pendant acceptor units. This leads to the special situation that the electrochemical gap between oxidation and reduction potentials is constant, while the optical band gap decreases, going from PPP, via PPF, to PPE. This design is used to study the effect of the optical gap on the photoinduced electron-transfer reaction that occurs between the main chain electron donor and the pendant acceptor, while the same polymer architecture and energy of the charge separated state are maintained. Fluorescence and photoinduced absorption spectroscopy are used to study the electron transfer following photoexcitation in relation to solvent polarity and in thin solid films. For the fluorene-phenylene alternating copolymer, intramolecular photoinduced electron transfer occurs in the Marcus optimal region.

Topics
  • impedance spectroscopy
  • copolymer
  • alternating copolymer