People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wolverson, Daniel
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Porous Structure Enhances the Longitudinal Piezoelectric Coefficient and Electromechanical Coupling Coefficient of Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3citations
- 2024Spin-order-dependent magneto-elastic interactions in two dimensional antiferromagnetic MnPSe3 observed through Raman spectroscopycitations
- 2024Porous structure enhances the longitudinal piezoelectric coefficient and electromechanical coupling coefficient of lead‐free (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O 3citations
- 2023Exploring the Charge Density Wave Phase of 1T-TaSe2citations
- 2020Excitonic and lattice contributions to the charge density wave in 1T-TiSe2 revealed by a phonon bottleneckcitations
- 2020Phase behavior and substitution limit of mixed cesium-formamidinium lead triiodide perovskitescitations
- 2018Investigating nanostructures in carbon fibres using Raman spectroscopycitations
- 2017Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubescitations
- 2017Interfacial control in graphene- and transition metal dichalcogenide-polymer nanocomposites
- 2017Electronic band structure of ReS 2 by high-resolution angle-resolved photoemission spectroscopycitations
- 2017Electronic bandstructure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopycitations
- 2017Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopycitations
- 2016Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubescitations
- 2016A comparison of the micromechanics of graphene- and transition metal dichalcogenide-nanocomposites
- 2014Raman spectra of monolayer, few-layer, and bulk ReSe 2 :An anisotropic layered semiconductorcitations
- 2014Raman spectra of monolayer, few-layer, and bulk ReSe2citations
- 2013Investigation of the sp3 structure of carbon fibres uUsing Uv-Raman spectroscopycitations
- 2012Porous silicon nanocrystals in a silica aerogel matrixcitations
- 2010Excitons in motion in II-VI semiconductorscitations
- 2010Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate to positively charged sulfonamidecitations
- 2008Coherent Raman detected electron spin resonance spectroscopy of metalloproteins: linking electron spin resonance and magnetic circular dichroismcitations
- 2008Thin-film modified electrodes with reconstituted cellulose-PDDAC films for the accumulation and detection of triclosancitations
- 2000Band structure parameters of quaternary phosphide semiconductor alloys investigated by magneto-optical spectroscopy
Places of action
Organizations | Location | People |
---|
article
Thin-film modified electrodes with reconstituted cellulose-PDDAC films for the accumulation and detection of triclosan
Abstract
A strategy for the formation of thin reconstituted cellulose films (pure or modified)) with embedded receptors or embedded ion-selective components is reported. Cellulose nanofibril ribbons from sisal of typically 3−5 nm diameter and 250 nm length are reconstituted into thin films of typically 1.5−2.0 μm thickness (or into thicker free-standing films). Cellulose and cellulose nanocomposite films are obtained in a simple solvent evaporation process. Poly-(diallyldimethylammonium chloride) or PDDAC is readily embedded into the cellulose film and imparts anion permselectivity to allow binding and transport of hydrophobic anions. The number of binding sites is controlled by the amount of PDDAC present in the film. The electrochemical properties of the cellulose films are investigated first for the Fe(CN)<sub>6</sub><sup>3-/4-</sup> model redox system and then for the accumulation and detection of triclosan (2,4,4‘-trichloro-2‘-hydroxydiphenyl ether, a hydrophobic polychlorinated phenol). Pure nanocellulose thin films essentially block the access to the electrode surface for anions such as Fe(CN)63- and Fe(CN)64-. In contrast, in the presence of cellulose−PDDAC films, accumulation and transport of both Fe(CN)63- and Fe(CN)64- in electrostatic binding sites occurs (Langmuirian binding constants for both are about 1.2 × 104 mol-1 dm3 in aqueous 0.1 M KCl). Facile reduction/oxidation at the electrode surface is observed. Triclosan, a widely used antifungal and antibacterial polychlorinated phenol is similarly accumulated into cationic binding sites (Langmuirian binding constant about 2.1 × 104 mol-1 dm3 in aqueous 0.1 M phosphate buffer pH 9.5) and is shown to give well-defined oxidation responses at glassy carbon electrodes. With a cellulose−PDDAC film electrode (80 wt % cellulose and 20 wt % PDDAC), the analytical range for triclosan in aqueous phosphate buffer at pH 9.5 is about 10<sup>-6</sup>−10<sup>-3</sup> mol dm<sup>-3</sup>.