People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lavalley, Jean-Claude
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Structural Origin of Unusual CO 2 Adsorption Behavior of a Small-Pore Aluminum Bisphosphonate MOF
Abstract
The adsorption of CO2, CH4, and N-2 at 303 K by MIL-91(Al), one of the few porous phosphonate-based-MOFs, has been investigated by combining advanced experimental and computational tools. Whereas CH4 and N-2 adsorption isotherms exhibit type I behavior, the reversible CO2 isotherm displays an unusual inflection point at low pressure. In situ X-ray powder diffraction and infrared spectroscopy showed structural changes of this small-pore MOF upon CO2 adsorption. Grand canonical Monte Carlo simulations delivered a detailed picture of the adsorption mechanisms at the microscopic level. The so-predicted arrangements of the confined CO2 molecules were supported by analysis of the in situ diffraction and infrared experiments. It was shown that while adsorbed CH4 and N-2 are located mainly in the center of the pores, CO2 molecules interact with the hydrogen-bonded POHN acidbase pairs. This results in a relatively high adsorption enthalpy for CO2 of ca. -40 kJ mol(-1), which suggests that this material might be of interest for CO2 capture at low pressure (postcombustion).