Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Suga, A.

  • Google
  • 1
  • 5
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014BF3 valence and Rydberg states as probed by electron energy loss spectroscopy and ab Initio calculations6citations

Places of action

Chart of shared publication
Hoshino, M.
1 / 5 shared
Duflot, D.
1 / 7 shared
Kato, H.
1 / 26 shared
Tanaka, H.
1 / 12 shared
Limao-Vieira, P.
1 / 9 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Hoshino, M.
  • Duflot, D.
  • Kato, H.
  • Tanaka, H.
  • Limao-Vieira, P.
OrganizationsLocationPeople

article

BF3 valence and Rydberg states as probed by electron energy loss spectroscopy and ab Initio calculations

  • Hoshino, M.
  • Duflot, D.
  • Kato, H.
  • Suga, A.
  • Tanaka, H.
  • Limao-Vieira, P.
Abstract

<p>In this contribution we probe BF<sub>3</sub> low-lying excited singlet states measured at 100 eV, 2.8° scattering angle and triplet states at 40 eV, 40° scattering angle, while sweeping the energy loss over the range 10.0-20.0 eV. The electronic state spectroscopy has been investigated and the assignments supported by quantum chemical calculations. This provides the first comprehensive investigation of all singlet and triplet excited electronic states of boron trifluoride up to the first ionization potential. A generalized oscillator strength analysis is employed to derive oscillator strength f<sub>0</sub> value and integral cross sections (ICSs) from the corresponding di fferential cross sections (DCSs). The f<sub>0</sub> value is compared with the optical oscillator strength (OOS) from photoabsorption, and the unscaled Born ICSs are then compared with relevant energy and binary-encounter and f-scaled Born cross section (BEf-scaling) results determined as a part of this investigation. The lowest n members of the Rydberg series have been assigned as converging to the lowest ionization energy limits of boron trifluoride and classified according to the magnitude of the quantum defects (δ). (Graph Presented).</p>

Topics
  • impedance spectroscopy
  • strength
  • defect
  • Boron
  • electron energy loss spectroscopy