People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Andrade, Maria Madalena Dionísio
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservationcitations
- 2023Study of the mesomorphic properties and conductivity of n-alkyl-2-picolinium ionic liquid crystalscitations
- 2022Polyhydroxyalkanoates from A Mixed Microbial Culturecitations
- 2022Synthesis and characterisation of ionic liquid crystals based on substituted pyridinium cationscitations
- 2021How Molecular Mobility, Physical State, and Drug Distribution Influence the Naproxen Release Profile from Different Mesoporous Silica Matricescitations
- 2021Influence of natural deep eutectic systems in water thermal behavior and their applications in cryopreservationcitations
- 2021Poly(L-lactic acid)/lithium ferrite compositescitations
- 2019A process engineering approach to improve production of P(3HB) by cupriavidus necator from used cooking oilcitations
- 2017Relaxation behavior of polyurethane networks with different composition and crosslinking densitycitations
- 2017Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hostscitations
- 2016Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systemscitations
- 2016Accessing the Physical State and Molecular Mobility of Naproxen Confined to Nanoporous Silica Matrixescitations
- 2015Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2015Electrical properties of lithium ferrite nanoparticles dispersed in a styrene-isoprene-styrene copolymer matrixcitations
- 2015Dipolar motions and ionic conduction in an ibuprofen derived ionic liquidcitations
- 2014Influence of nanoscale confinement on the molecular mobility of ibuprofencitations
- 2014Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoatescitations
- 2014Ion jelly conductive properties using dicyanamide-based ionic liquidscitations
- 2014Self-standing elastomeric composites based on lithium ferrites and their dielectric behaviorcitations
- 2013New method to analyze dielectric relaxation processescitations
- 2012Probing radiation damage by alternated current conductivity as a method to characterize electron hopping conduction in DNA moleculescitations
- 2012Understanding the Ion Jelly Conductivity Mechanismcitations
- 2011Kinetics of free radical polymerization probed by dielectric relaxation spectroscopy under high conductivity conditionscitations
- 2011Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopycitations
- 2011Phase Transformations Undergone by Triton X-100 Probed by Differential Scanning Calorimetry and Dielectric Relaxation Spectroscopycitations
- 2007Dielectric and mechanical relaxation processes in methyl acrylate/tri-ethyleneglycol dimethacrylate copolymer networkscitations
- 2007Temperature modulated DSC study of the kinetics of free radical isothermal network polymerizationcitations
- 2007Origin of glassy dynamics in a liquid crystal studied by broadband dielectric and specific heat spectroscopycitations
- 2006Changes in molecular dynamics upon formation of a polymer dispersed liquid crystalcitations
- 2005Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry laboratorycitations
- 2002Dielectric studies of the nematic mixture E7 on a hdroxypropylcellulose substratecitations
Places of action
Organizations | Location | People |
---|
article
Ion jelly conductive properties using dicyanamide-based ionic liquids
Abstract
<p>The thermal behavior and transport properties of several ion jellys (IJs), a composite that results from the combination of gelatin with an ionic liquid (IL), were investigated by dielectric relaxation spectroscopy (DRS), differential scanning calorimetry (DSC), and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG NMR). Four different ILs containing the dicyanamide anion were used: 1-butyl-3-methylimidazolium dicyanamide (BMIMDCA), 1-ethyl-3-methylimidazolium dicyanamide (EMIMDCA), 1-butyl-1-methylpyrrolidinium dicyanamide (BMPyrDCA), and 1-butylpyridinium dicyanamide (BPyDCA); the bulk ILs were also investigated for comparison. A glass transition was detected by DSC for all materials, ILs and IJs, allowing them to be classified as glass formers. Additionally, an increase in the glass transition temperature upon dehydration was observed with a greater extent for IJs, attributed to a greater hindrance imposed by the gelatin matrix after water removal, rendering the IL less mobile. While crystallization is observed for some ILs with negligible water content, it was never detected for any IJ upon thermal cycling, which persist always as fully amorphous materials. From DRS measurements, conductivity and diffusion coefficients for both cations (D<sub>+</sub>) and anions (D <sub>-</sub>) were extracted. D<sub>+</sub> values obtained by DRS reveal excellent agreement with those obtained from PFG NMR direct measurements, obeying the same VFTH equation over a large temperature range (ΔT ≈ 150 K) within which D<sub>+</sub> varies around 10 decades. At temperatures close to room temperature, the IJs exhibit D values comparable to the most hydrated (9%) ILs. The IJ derived from EMIMDCA possesses the highest conductivity and diffusion coefficient, respectively, ∼10<sup>-2</sup> S·cm <sup>-1</sup> and ∼10<sup>-10</sup> m<sup>2</sup>·s<sup>-1</sup>. For BMPyrDCA the relaxational behavior was analyzed through the complex permittivity and modulus formalism allowing the assignment of the detected secondary relaxation to a Johari-Goldstein process. Besides the relevant information on the more fundamental nature providing physicochemical details on ILs behavior, new doorways are opened for practical applications by using IJ as a strategy to produce novel and stable electrolytes for different electrochemical devices.</p>