Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bernatowicz, Piotr

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Quasistatic disorder of NH⋯N bonds and elastic-properties relationship in 2-phenylimidazole crystals7citations

Places of action

Chart of shared publication
Katrusiak, Andrzej
1 / 30 shared
Szafrański, Marek
1 / 23 shared
Sikora, Magdalena
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Katrusiak, Andrzej
  • Szafrański, Marek
  • Sikora, Magdalena
OrganizationsLocationPeople

article

Quasistatic disorder of NH⋯N bonds and elastic-properties relationship in 2-phenylimidazole crystals

  • Katrusiak, Andrzej
  • Bernatowicz, Piotr
  • Szafrański, Marek
  • Sikora, Magdalena
Abstract

<p>The molecular aggregation in 2-phenylimidazole is analogous to that observed in the new class of NH⋯N bonded ferroelectrics and relaxors. Disordered H-atoms in NH⋯N hydrogen-bonded chains in the average crystal structure of 2-phenylimidazole persist to 100 K, but the relaxation time of this process is very long even above 340 K. Above 200 K, a gradual increase of the electric permittivity along chains testifies to the activation of dipolar fluctuations, associated with proton transfers in the quasistatic disordered chains. However, the chemical shifts of nitrogen atoms (equivalent according to the average crystal symmetry) remain clearly distinguished as protonated and unprotonated in <sup>15</sup>N NMR spectra up to 340 K at least. The 2-phenylimidazole crystal exhibits an unusual negative-linear thermal expansion (NTE) in the entire 140-340 K range, induced by subtle rotations of the NH⋯N bonded molecules. The NTE direction is the softest in the hydrostatically compressed crystal, which violates the inverse relationship rule of compression and thermal expansion. The crystal compression is monotonic, but clearly nonlinear, which is connected with the pressure enforced adjustments in the molecular packing between 0.1 MPa and 0.4 GPa, when small voids between molecules are eliminated. © 2014 American Chemical Society.</p>

Topics
  • impedance spectroscopy
  • Nitrogen
  • Hydrogen
  • thermal expansion
  • activation
  • void
  • Nuclear Magnetic Resonance spectroscopy