Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fruchtl, Herbert Anton

  • Google
  • 8
  • 28
  • 456

University of St Andrews

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Electrochemical activation applied to perovskite titanate fibres to yield supported alloy nanoparticles for electrocatalytic application20citations
  • 2022Highly ordered N-heterocyclic carbene monolayers on Cu(111)27citations
  • 2019Calculating the frequencies and intensities of strongly anharmonic modes of adsorbates on surfaces1citations
  • 2016Metallosupramolecular assembly of Cr and p-terphenylnitrile by dissociation of metal carbonyls on Au(111)6citations
  • 2014Coupling Epitaxy, Chemical Bonding, and Work Function at the Local Scale in Transition Metal-Supported Graphene154citations
  • 2014Passivation of Copper: Benzotriazole Films on Cu (111)69citations
  • 2012An ordered organic radical adsorbed on a Cu-doped Au(111) surface25citations
  • 2010Coupling Epitaxy, Chemical Bonding, and Work Function at the Local Scale in Transition Metal-Supported Graphene154citations

Places of action

Chart of shared publication
Liu, Chencheng
1 / 2 shared
Xu, Min
1 / 3 shared
Irvine, John Thomas Sirr
1 / 169 shared
Buehl, Michael
1 / 15 shared
Naden, Aaron Benjamin
1 / 11 shared
Baddeley, Christopher John
2 / 8 shared
Alex, J. Veinot
1 / 1 shared
Singh, Ishwar
1 / 2 shared
Angove, Eloise
1 / 4 shared
Horton, J. Hugh
1 / 2 shared
Crudden, Cathleen M.
1 / 2 shared
Grillo, Federico
5 / 19 shared
Schaub, Renald
3 / 9 shared
Hooley, Chris A.
1 / 3 shared
Torres, José A. Garrido
1 / 1 shared
Goetze, Jan P.
1 / 1 shared
Richardson, Neville V.
3 / 10 shared
Larrea, Christian Rodriguez
1 / 3 shared
Anderson, Amanda Elizabeth
1 / 1 shared
Green, Riho Thomas Seljamae
1 / 2 shared
Caffio, Marco
2 / 6 shared
Wang, Bo
2 / 19 shared
Bromley, Catherine
2 / 4 shared
Tee, Daniel Walton
1 / 1 shared
Francis, Stephen Malcolm
2 / 5 shared
Mugnaini, Veronica
1 / 4 shared
Oliveros, Malena
1 / 2 shared
Veciana, Jaume
1 / 12 shared
Chart of publication period
2023
2022
2019
2016
2014
2012
2010

Co-Authors (by relevance)

  • Liu, Chencheng
  • Xu, Min
  • Irvine, John Thomas Sirr
  • Buehl, Michael
  • Naden, Aaron Benjamin
  • Baddeley, Christopher John
  • Alex, J. Veinot
  • Singh, Ishwar
  • Angove, Eloise
  • Horton, J. Hugh
  • Crudden, Cathleen M.
  • Grillo, Federico
  • Schaub, Renald
  • Hooley, Chris A.
  • Torres, José A. Garrido
  • Goetze, Jan P.
  • Richardson, Neville V.
  • Larrea, Christian Rodriguez
  • Anderson, Amanda Elizabeth
  • Green, Riho Thomas Seljamae
  • Caffio, Marco
  • Wang, Bo
  • Bromley, Catherine
  • Tee, Daniel Walton
  • Francis, Stephen Malcolm
  • Mugnaini, Veronica
  • Oliveros, Malena
  • Veciana, Jaume
OrganizationsLocationPeople

article

Passivation of Copper: Benzotriazole Films on Cu (111)

  • Tee, Daniel Walton
  • Francis, Stephen Malcolm
  • Fruchtl, Herbert Anton
  • Grillo, Federico
  • Richardson, Neville V.
Abstract

Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s. However, the molecular level detail of how adsorption and surface passivation occur remains a matter of debate. BTAH adsorption on a Cu(111) single crystal has been investigated from medium coverage to multilayer using scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), high resolution electron energy loss (HREEL) spectroscopy and supporting density functional theory (DFT) calculations. Both physisorbed and chemisorbed phases are observed. One extended and highly ordered self-assembled metal−organic phase is seen at saturation coverage and above. A metastable phase is also observed. Complete desorption occurs at ca. 600 K. Those structures are critically discussed in the light of some of the various adsorption models reported in the literature and an alternative adsorption model is proposed. These results allow a further understanding of the interaction between benzotriazole and copper and, in turn, may help understanding the mechanism for protection of copper and copper alloys from corrosion, substantially contributing to a long-standing debate.

Topics
  • density
  • impedance spectroscopy
  • surface
  • single crystal
  • corrosion
  • theory
  • copper
  • density functional theory
  • scanning tunneling microscopy
  • metastable phase
  • copper alloy