People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heitjans, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Lithium Niobate for Fast Cycling in Li-ion Batteries: Review and New Experimental Resultscitations
- 2018Ion dynamics in a new class of materials: nanoglassy lithium alumosilicates
- 2017Structure and ion dynamics of mechanosynthesized oxides and fluorides
- 2016Single-crystal neutron diffraction on γ-LiAlO2: structure determination and estimation of lithium diffusion pathway
- 2016A novel low-temperature solid-state route for nanostructured cubic garnet Li 7 La 3 Zr 2 O 12 and its application to Li-ion battery
- 2016Solid-state diffusion and NMR
- 2015Synthesis and Electrochemical Behavior of Nanostructured Copper Particles on Graphite for Application in Lithium Ion Batteries
- 2015A simple and straightforward mechanochemical synthesis of the far-from-equilibrium zinc aluminate, ZnAl2O4, and its response to thermal treatment
- 2014Theoretical study of Li migration in lithium-graphite intercalation compounds with dispersion-corrected DFT methodscitations
- 2012The ionic conductivity in lithium-boron oxide materials and its relation to structural, electronic and defect propertiescitations
- 2012Self-diffusion of lithium in amorphous lithium niobate layers
- 2011Structure and dynamics of the fast lithium ion conductor "li 7La3Zr2O12"
- 2010Mössbauer Spectroscopy for Studying Chemical Reactions
- 2010Ion Transport Properties of the Inverse Perovskite BaLiF3 Prepared by High-Energy Ball Milling
- 2009Li Ion diffusion in nanocrystalline and nanoglassy LiAISi2O 6 and LiBO2 - Structure dynamics relations in two glass forming compounds
- 2007Enhanced conductivity at the interface of Li2O:B2O3 nanocompositescitations
- 2007Enhanced conductivity at the interface of Li2O:B2O3 nanocomposites: Atomistic models
- 2005Ion hopping in crystalline and glassy spodumene LiAlSi2O6: Li7 spin-lattice relaxation and Li7 echo NMR spectroscopy
- 2005Fast dynamics of H2O in hydrous aluminosilicate glasses studied with quasielastic neutron scattering
- 2005Solid-State Diffusion and NMR
- 2000Nanocrystalline versus microcrystalline Lo2O:B2O 3 composites: Anomalous ionic conductivities and percolation theory
Places of action
Organizations | Location | People |
---|
article
Theoretical study of Li migration in lithium-graphite intercalation compounds with dispersion-corrected DFT methods
Abstract
<p>Structural, energetic, electronic, and defect properties of lithium-graphite intercalated compounds (LiC<sub>6n</sub> (n = 1, 2)) are investigated theoretically with periodic quantum-chemical methods. Calculated properties obtained with a gradient-corrected density functional theory (DFT) method and a dispersion-corrected DFT method (DFT-D3-BJ) are compared. The DFT-D3-BJ method gives better agreement with experiment for the structural parameters and Li intercalation energy compared to the uncorrected DFT approach, showing that interlayer interactions due to the van der Waals forces play an effective role in graphite and LiC<sub>6n</sub> compounds. In agreement with the literature, the calculated density of states (DOS) show that graphite is metallic with a low DOS at the Fermi level, whereas LiC<sub>6n</sub> compounds have a high DOS at the Fermi level. Between the considered point defects, V <sub>Li</sub> and Li<sub>i</sub>, the energy needed to form Li point defects is smaller if solid Li is used as reference. A moderate relaxation is observed for the atoms surrounding the Li defect. Competing pathways for Li diffusion in LiC<sub>6n</sub> compounds are investigated using the climbing-image nudged elastic band approach. Two different mechanisms for Li diffusion are observed, the vacancy mechanism and the Frenkel mechanism. For both cases, Li migration pathways along the ab plane and along the c crystallographic axis are investigated. A large activation barrier along the c crystallographic direction indicates that Li does not diffuse in the c direction. The calculated activation barriers for Li diffusion in the ab plane are consistent with previous experimental investigations.</p>