Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chabinyc, Michael L.

  • Google
  • 4
  • 42
  • 254

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Enhancing and Extinguishing the Different Emission Features of 2D (EA<sub>1−</sub><i><sub>x</sub></i>FA<i><sub>x</sub></i>)<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub> Perovskite Films3citations
  • 2022Tuning of the elastic modulus of a soft polythiophene through molecular doping27citations
  • 2013Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents141citations
  • 2013Interpreting the density of states extracted from organic solar cells using transient photocurrent measurements83citations

Places of action

Chart of shared publication
Kanatzidis, Mercouri G.
1 / 16 shared
Kennard, Rhiannon M.
1 / 1 shared
Seshadri, Ram
1 / 10 shared
Cotts, Benjamin L.
1 / 3 shared
Mohtashami, Yahya
1 / 1 shared
Chung, Juil
1 / 1 shared
Decrescent, Ryan A.
1 / 1 shared
Schaller, Richard
1 / 10 shared
Panuganti, Shobhana
1 / 2 shared
Dahlman, Clayton
1 / 1 shared
Stone, Kevin H.
1 / 7 shared
Morgan, Emily
1 / 2 shared
Kincaid, Joseph
1 / 1 shared
Schuller, Jon
1 / 1 shared
Mao, Lingling
1 / 9 shared
Salleo, Alberto
1 / 38 shared
Kim, Donghyun
1 / 6 shared
Matheson, Amanda M.
1 / 1 shared
Fenton, Abigail M.
1 / 1 shared
Lund, Anja
1 / 10 shared
Zokaei, Sepideh
1 / 6 shared
Weisen, Albree R.
1 / 1 shared
Gomez, Enrique D.
1 / 3 shared
Järsvall, Emmy
1 / 8 shared
Zozoulenko, Igor
1 / 20 shared
Nguyen, Phong H.
1 / 2 shared
Hultmark, Sandra
1 / 6 shared
Müller, Christian
1 / 43 shared
Kroon, Renee
1 / 28 shared
Treat, Neil D.
1 / 1 shared
Malik, Jennifer A. Nekuda
1 / 1 shared
Smith, Paul
1 / 16 shared
Shuttle, Christopher G.
1 / 1 shared
Hawker, Craig J.
2 / 23 shared
Stingelin, Natalie
1 / 23 shared
Mackenzie, Roderick C. I.
1 / 6 shared
Treat, Neil
1 / 1 shared
Dibb, George F.
1 / 1 shared
Nelson, Jenny
1 / 21 shared
Shuttle, Chris G.
1 / 1 shared
Robb, Maxwell J.
1 / 1 shared
Von Hauff, Elizabeth
1 / 27 shared
Chart of publication period
2022
2013

Co-Authors (by relevance)

  • Kanatzidis, Mercouri G.
  • Kennard, Rhiannon M.
  • Seshadri, Ram
  • Cotts, Benjamin L.
  • Mohtashami, Yahya
  • Chung, Juil
  • Decrescent, Ryan A.
  • Schaller, Richard
  • Panuganti, Shobhana
  • Dahlman, Clayton
  • Stone, Kevin H.
  • Morgan, Emily
  • Kincaid, Joseph
  • Schuller, Jon
  • Mao, Lingling
  • Salleo, Alberto
  • Kim, Donghyun
  • Matheson, Amanda M.
  • Fenton, Abigail M.
  • Lund, Anja
  • Zokaei, Sepideh
  • Weisen, Albree R.
  • Gomez, Enrique D.
  • Järsvall, Emmy
  • Zozoulenko, Igor
  • Nguyen, Phong H.
  • Hultmark, Sandra
  • Müller, Christian
  • Kroon, Renee
  • Treat, Neil D.
  • Malik, Jennifer A. Nekuda
  • Smith, Paul
  • Shuttle, Christopher G.
  • Hawker, Craig J.
  • Stingelin, Natalie
  • Mackenzie, Roderick C. I.
  • Treat, Neil
  • Dibb, George F.
  • Nelson, Jenny
  • Shuttle, Chris G.
  • Robb, Maxwell J.
  • Von Hauff, Elizabeth
OrganizationsLocationPeople

article

Interpreting the density of states extracted from organic solar cells using transient photocurrent measurements

  • Mackenzie, Roderick C. I.
  • Treat, Neil
  • Dibb, George F.
  • Chabinyc, Michael L.
  • Hawker, Craig J.
  • Nelson, Jenny
  • Shuttle, Chris G.
  • Robb, Maxwell J.
  • Von Hauff, Elizabeth
Abstract

The energetic distribution of trapped carrier states (DoS) in organic photovoltaic (OPV) devices is a key device parameter which controls carrier mobility and the recombination rate; as such, it can ultimately limit device efficiency. Recent studies have attempted to measure the DoS from working OPV devices using transient photocurrent methods adapted from the time-of-flight (ToF) method originally developed to measure mobility in thick unipolar devices. While a method to extract the DoS from OPV devices using a simple optoelectronic means would be valuable, analysis is complicated by the presence of both electrons and holes in the bipolar organic solar cells. The presence of both carrier species leads to distortion of the extracted DoS due to (a) recombination losses removing carriers from the photocurrent transient thus changing its shape and (b) both LUMO and HOMO DoS features being observed simultaneously in any measurement. In this paper we use a detailed device model to determine the conditions under which the DoS can safely be extracted from the transient photocurrent from bipolar devices. We show that under conditions of reverse bias it is possible to extract the undistorted DoS from a working OPV device. We apply our method to estimate the DoS in a bulk heterojunction solar cell made of a novel low band gap, diketopyrrolopyrrole-based polymer blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) and solar cells made of poly(3 hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) annealed over a range of temperatures.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • mobility
  • ester