Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garcia Rio, L.

  • Google
  • 1
  • 5
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Self-Aggregation Properties of Ionic Liquid 1,3-Didecyl-2-methylimidazolium Chloride in Aqueous Solution: From Spheres to Cylinders to Bilayers47citations

Places of action

Chart of shared publication
Rodriguez Dafonte, P.
1 / 1 shared
Parajo, M.
1 / 1 shared
Francisco, V.
1 / 1 shared
Figueira Gonzalez, M.
1 / 1 shared
Marques, Ef
1 / 11 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Rodriguez Dafonte, P.
  • Parajo, M.
  • Francisco, V.
  • Figueira Gonzalez, M.
  • Marques, Ef
OrganizationsLocationPeople

article

Self-Aggregation Properties of Ionic Liquid 1,3-Didecyl-2-methylimidazolium Chloride in Aqueous Solution: From Spheres to Cylinders to Bilayers

  • Rodriguez Dafonte, P.
  • Parajo, M.
  • Garcia Rio, L.
  • Francisco, V.
  • Figueira Gonzalez, M.
  • Marques, Ef
Abstract

The self-aggregation behavior of the double-chained ionic liquid (IL) 1,3-didecyl-2-methylimidazolium chloride ([C(10)C(10)mim]Cl) in aqueous solution has been investigated with a number of different experimental techniques Two cmc values (cmc(1) and cmc(2)) are obtained from conductivity measurements. The fraction of neutralized charge on the micellar surface suggests that cmc(1) corresponds to the formation of spherical micelles and cmc(2) to the transition from spherical to cylindrical micelles. Data obtained from fluorescence spectroscopy (using pyrene and Nile red as chemical probes), fluorescence anisotropy (using rhodamine B as probe), and chemical shift H-1 NMR (in D2O) provide a picture that is also consistent with a sphere-to-cylinder transition. This structural change is further confirmed by diffusion-ordered NMR spectroscopy (DOSY), from the self-diffusion coefficients for surfactant unimer and aggregates. Furthermore, a third evolution from cylindrical micelles to bilayer aggregates is proposed from the analysis of diffusion coefficients at high surfactant concentration ([IL] > 0.2 M). Phase scanning experiments performed with polarized light microscopy clearly demonstrate the presence of a lamellar liquid crystalline phase at very high IL concentration, thus confirming the coexistence of bilayer structures with elongated micelles, found at lower concentration. Additionally, [C(10)C(10)mim]Cl micelles are proposed as novel reaction media, as evidenced by the solvolysis reaction of 4-methoxybenzenesulfonyl chloride (MBSC).

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • crystalline phase
  • Nuclear Magnetic Resonance spectroscopy
  • surfactant
  • Polarized light microscopy
  • fluorescence spectroscopy