Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Girolami, Gregory S.

  • Google
  • 2
  • 13
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Nanosoldering Carbon Nanotube Junctions by Local Chemical Vapor Deposition for Improved Device Performance38citations
  • 2012Volatilities of actinide and lanthanide N, N -dimethylaminodiboranate chemical vapor deposition precursors20citations

Places of action

Chart of shared publication
Rogers, John A.
1 / 3 shared
Mallek, Justin
1 / 1 shared
Lyding, Joseph W.
1 / 3 shared
Xie, Xu
1 / 1 shared
Chang, Noel N.
1 / 1 shared
Do, Jae-Won
1 / 1 shared
Estrada, David
1 / 1 shared
Miró, Pere
1 / 3 shared
Daly, Scott R.
1 / 1 shared
Todorova, Tanya K.
1 / 3 shared
Koballa, Drew
1 / 1 shared
Vlaisavljevich, Bess
1 / 1 shared
Gagliardi, Laura
1 / 16 shared
Chart of publication period
2013
2012

Co-Authors (by relevance)

  • Rogers, John A.
  • Mallek, Justin
  • Lyding, Joseph W.
  • Xie, Xu
  • Chang, Noel N.
  • Do, Jae-Won
  • Estrada, David
  • Miró, Pere
  • Daly, Scott R.
  • Todorova, Tanya K.
  • Koballa, Drew
  • Vlaisavljevich, Bess
  • Gagliardi, Laura
OrganizationsLocationPeople

article

Volatilities of actinide and lanthanide N, N -dimethylaminodiboranate chemical vapor deposition precursors

  • Girolami, Gregory S.
  • Miró, Pere
  • Daly, Scott R.
  • Todorova, Tanya K.
  • Koballa, Drew
  • Vlaisavljevich, Bess
  • Gagliardi, Laura
Abstract

<p>N,N-Dimethylaminodiboranate complexes with praseodymium, samarium, erbium, and uranium, which are potential chemical vapor deposition precursors for the deposition of metal boride and oxide thin films, have been investigated by DFT guided by field-ionization mass spectroscopy experiments. The calculations indicate that the volatilities of these complexes are correlated with the M-H bond strengths as determined by Mayer bond order analysis. The geometries of the gas-phase monomeric, dimeric, and trimeric species seen in field-ionization mass spectroscopy experiments were identified using DFT calculations, and the relative stabilities of these oligomers were assessed to understand how the lanthanide aminodiboranates depolymerize to their respective volatile forms during sublimation.</p>

Topics
  • phase
  • experiment
  • thin film
  • strength
  • density functional theory
  • boride
  • chemical vapor deposition
  • spectroscopy
  • Uranium
  • Erbium
  • Praseodymium
  • Samarium