People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dumont, Jacques A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2013Adhesion, resistivity and structural, optical properties of molybdenum on steel sheet coated with barrier layer done by sol-gel for CIGS solar cellscitations
- 2011Novel high thermal barrier layers for flexible CIGS solar cells on stainless steel substratescitations
- 2011Physical chemistry of the Mn/ZnO (0001̄) interface probed by hard X-ray photoelectron spectroscopycitations
- 2009Demixing processes in AgPd superlatticescitations
- 2007Co interaction on ZnO(000–1) investigated by scanning tunneling microscopycitations
- 2004Structural and electronic properties of Ag-Pd superlatticescitations
- 2004Electronic Structure of Ag-Pd heterostructures
Places of action
Organizations | Location | People |
---|
article
Physical chemistry of the Mn/ZnO (0001̄) interface probed by hard X-ray photoelectron spectroscopy
Abstract
The oxidation of a thin Mn film grown on a ZnO (0001̄) surface and the subsequent diffusion of Mn into the oxide single crystal are investigated in situ by using high-energy X-ray photoelectron spectroscopy (HAXPES). Using hard X-rays allows one not only to investigate the chemistry at the heterojunction but also to describe in detail the thermal diffusion process and the electron energy band alignment at the Mn/ZnO interface. Charge transfer occurs between the metallic Mn film and the ZnO surface which causes the ZnO valence band to bend downward in the interfacial region. Annealing at 630 K leads to the formation of a thin two-dimensional MnO film which induces an upward bending of ZnO bands. Upon annealing at 800 K, Mn diffuses into the substrate crystal. A Mn concentration profile is derived, and a diffusion coefficient of 1.4 × 10 -19 m 2 /s is experimentally determined.