Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fujita, Masahiro

  • Google
  • 1
  • 4
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Proton transport properties in Zwitterion blends with Bronsted acids36citations

Places of action

Chart of shared publication
Forsyth, Maria
1 / 42 shared
Macfarlane, Douglas
1 / 33 shared
Ohno, Hiroyuki
1 / 1 shared
Byrne, Nolene
1 / 3 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Forsyth, Maria
  • Macfarlane, Douglas
  • Ohno, Hiroyuki
  • Byrne, Nolene
OrganizationsLocationPeople

article

Proton transport properties in Zwitterion blends with Bronsted acids

  • Forsyth, Maria
  • Macfarlane, Douglas
  • Ohno, Hiroyuki
  • Byrne, Nolene
  • Fujita, Masahiro
Abstract

We describe zwitterion, 3-(1-butyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate (Bimps), mixtures with 1,1,1- trifluoro-N- trifluoromethylsulfonyl)methanesulfoneamide (HN(Tf)2) as new proton transport electrolytes. We report proton transport mechanisms in the mixtures based on results from several methods including thermal analyses, the complex-impedance method, and the pulsed field gradient spin echo NMR (pfg-NMR) method. The glass transition temperature (Tg) of the mixtures decreased with increasing HN(Tf)2 concentration up to 50 mol . The Tg remained constant at -55 A?C with further acid doping. The ionic conductivity of HN(Tf)2 mixtures increased with the HN(Tf)2 content up to 50 mol . Beyond that ratio, the mixtures showed no increase in ionic conductivity (10-4 S cm-1 at room temperature). This tendency agrees well with that of Tg. However, the self-diffusion coefficients obtained from the pfg-NMR method increased with HN(Tf)2 content even above 50 mol for all component ions. At HN(Tf)2 50 mol , the proton diffusion of HN(Tf)2 was the fastest in the mixture. These results suggest that Bimps cannot dissociate excess HN(Tf)2, that is, the excess HN(Tf)2 exists as molecular HN(Tf)2 in the mixtures. The zwitterion, Bimps, forms a 1:1 complex with HN(Tf)2 and the proton transport property in this mixture is superior to those of other mixing ratios. Furthermore, CH3SO3H and CF3SO3H were mixed with Bimps for comparison. Both systems showed a similar tendency, which differed from that of the HN(Tf)2 system. The Tg decreased linearly with increasing acid content for every mixing ratio, while the ionic conductivity increased linearly. Proton transport properties in zwitterion/acid mixtures were strongly affected by the acid species added.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature
  • Nuclear Magnetic Resonance spectroscopy
  • transport property