People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kronik, Leeor
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Mechanism and Timescales of Reversible p‐Doping of Methylammonium Lead Triiodide by Oxygencitations
- 2021Mechanism and Timescales of Reversible p‐Doping of Methylammonium Lead Triiodide by Oxygencitations
- 2019Constructing the Electronic Structure of CH3NH3PbI3 and CH3NH3PbBr3 Perovskite Thin Films from Single-Crystal Band Structure Measurementscitations
- 2018Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfacescitations
- 2017Biologically Controlled Morphology and Twinning in Guanine Crystalscitations
- 2016Valence and Conduction Band Densities of States of Metal Halide Perovskitescitations
- 2016Enhanced Magnetoresistance in Molecular Junctions by Geometrical Optimization of Spin-Selective Orbital Hybridizationcitations
- 2016High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodidecitations
- 2016Optical phonons in methylammonium lead halide perovskites and implications for charge transportcitations
- 2015Multiscale approach to the electronic structure of doped semiconductor surfacescitations
- 2015"Guanigma"citations
- 2015"guanigma":The Revised Structure of Biogenic Anhydrous Guaninecitations
- 2013Effect of molecule-surface reaction mechanism on the electronic characteristics and photovoltaic performance of molecularly modified Sicitations
- 2010Hg/Molecular Monolayer-Si Junctionscitations
- 2006Spin-polarized electronic structure of Mn-IV-V2 chalcopyritescitations
- 2005Size-dependent spintronic properties of dilute magnetic semiconductor nanocrystalscitations
- 2004Electronic structure and spin polarization of MnGaPcitations
- 2002Electronic structure and spin polarization of MnxGa1-xNcitations
- 2001Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductorscitations
- 2000Frontier orbital model of semiconductor surface passivation
Places of action
Organizations | Location | People |
---|
article
Hg/Molecular Monolayer-Si Junctions
Abstract
Metal-organic molecule-semiconductor junctions are controlled not only by the molecular properties, as in metal-organic molecule-metal junctions, but also by effects of the molecular dipole, the dipolar molecule-semiconductor link, and molecule-semiconductor charge transfer, and by the effects of all these on the semiconductor depletion layer (i.e., on the internal semiconductor barrier to charge transport). Here, we report on and compare the electrical properties (current-voltage, capacitance-voltage, and work function) of large area Hg/organic monolayer-Si junctions with alkyl and alkenyl monolayers on moderately and highly doped n-Si, and combine the experimental data with simulations of charge transport and electronic structure calculations. We show that, for moderately doped Si, the internal semiconductor barrier completely controls transport and the attached molecules influence the transport of such junctions only in that they drive the Si into inversion. The resulting minority carrier-controlled junction is not sensitive to molecular changes in the organic monolayer at reverse and low forward bias and is controlled by series resistance at higher forward bias. However, in the case of highly doped Si, the internal barrier is smaller, and as a result, the charge transport properties of the junction are affected by changing from an alkyl to an alkenyl monolayer. We propose that the double bond near the surface primarily increases the coupling between the organic monolayer and the Si, which increases the current density at a given bias by increasing the contact conductance.