Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chan, Elaine R.

  • Google
  • 1
  • 4
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Aggregation of POSS monomers in liquid hexane15citations

Places of action

Chart of shared publication
Glotzer, Sharon C.
1 / 2 shared
Striolo, Alberto
1 / 7 shared
Cummings, Peter
1 / 7 shared
Mccabe, Clare
1 / 7 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Glotzer, Sharon C.
  • Striolo, Alberto
  • Cummings, Peter
  • Mccabe, Clare
OrganizationsLocationPeople

article

Aggregation of POSS monomers in liquid hexane

  • Glotzer, Sharon C.
  • Striolo, Alberto
  • Cummings, Peter
  • Mccabe, Clare
  • Chan, Elaine R.
Abstract

<p>Polyhedral oligomeric silsesquioxanes (POSS) are multifunctional molecules that can be employed as building blocks to develop nanocomposite materials whose mechanical properties often improve upon those of traditional polymeric materials. We report here molecular simulation results for the effective potential of mean force between octamethyl POSS monomers and between POSS monomers in which one methyl group has been substituted by a linear alkane chain of nine carbon atoms in liquid normal hexane at 300 and 400 K. The results are discussed and compared to available data for the effective interactions between octamethyl POSS monomers in normal hexadecane. Our results show that the effective short-ranged POSS-POSS attraction is significantly weaker in hexane than it is in hexadecane, perhaps explaining why normal hexane is often the solvent of choice for the preparation of POSS-containing materials. Additionally, we provide results for the radial distribution functions between selected sites in the POSS monomers that can be used both to understand the association between POSS monomers in solution and to parametrize coarse-grained simulation models. Such models will be used to study the formation of POSS-containing supramolecular structures such as lamellae or micelles that are currently not accessible by atomistic simulation and can be compared to experimental observations.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • simulation
  • alkane
  • lamellae