People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wagner, Hanoch Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024From Basic Principles of Protein-Polysaccharide Association to the Rational Design of Thermally Sensitive Materialscitations
- 2022Fragmentation of beaded fibres in a composite
- 2016Graphene oxide-Laponite hybrid from highly stable aqueous dispersioncitations
- 2013Osteonal lamellae elementary unitscitations
- 2012Nanoindentation of osteonal bone lamellaecitations
- 2010A novel experimental method for the local mechanical testing of human coronal dentincitations
- 2009Compressive response of dentin micro-pillarscitations
- 2007Microscopic investigation of shear in multiwalled nanotube deformationcitations
- 2001Nanoscale shear and indentation measurements in transcrystalline α-isotactic polypropylenecitations
- 2001Mechanics and dynamics of transcrystalline alpha-isotactic polypropylene at the nanoscale
Places of action
Organizations | Location | People |
---|
article
Microscopic investigation of shear in multiwalled nanotube deformation
Abstract
<p>The cylindrical geometry of nanotubes dictates a strong anisotropy of their physical properties. In practice, the difficulty in extracting individual components of the elastic tensor has limited the available information to only very partial and indirect experimental data. Here, the interlayer shear (sliding) modulus (C<sub>44</sub>) of single multiwalled WS<sub>2</sub> nanotubes was studied by atomic force microscopy bending tests. The observed value of 2 GPa agrees well with the value of 4 GPa obtained for density functional tight binding calculations for 2H-MoS<sub>2</sub>. This value of the shear modulus represents a much higher degree of anisotropy than that obtained for carbon nanotubes and enables assignment of the mode of shear deformation.</p>