People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouvier, Pierre
Institut Néel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023VO2 under hydrostatic pressure: Isostructural phase transition close to a critical end-pointcitations
- 2019Three-phase metal-insulator transition and structural alternative for a VO2 film epitaxially grown on Al2O3(0001)citations
- 2015High pressure single crystal x-ray and neutron powder diffraction study of the ferroelectric-paraelectric phase transition in PbTiO3citations
- 2014Jahn-Teller, Polarity, and Insulator-to-Metal Transition in BiMnO3 at High Pressurecitations
- 2012X-ray diffraction from stishovite under nonhydrostatic compression to 70 GPa: Strength and elasticity across the tetragonal → orthorhombic transitioncitations
- 2011High-pressure polarized Raman spectra of Gd(2)(MoO(4))(3): phase transitions and amorphizationcitations
- 2010Absence of pressure-induced amorphization in LiKSO4citations
- 2010Pressure-temperature phase diagram of SrTiO3 up to 53 GPacitations
- 2009Single crystal growth of BiMnO3 under high pressure-high temperature
- 2007Comparative study and imaging by PhotoElectroChemical techniques of oxide films thermally grown on zirconium and Zircaloy-4citations
- 2007Structural evolution of (Ca 0.35 Sr 0.65 )TiO 3 perovskite at high pressurescitations
- 2006Hot compaction of nanocrystalline TiO<sub>2</sub> (anatase) ceramics. Mechanisms of densification: Grain size and doping effectscitations
- 2006Raman scattering of the model multiferroic oxide BiFeO 3 : effect of temperature, pressure and stresscitations
- 2006Raman scattering of the model multiferroic oxide BiFeO<sub>3</sub>: effect of temperature, pressure and stresscitations
- 2006SnO 2 /MoO 3 -nanostructure and alcohol detectioncitations
- 2006Raman Imaging and Kelvin Probe Microscopy for the Examination of the Heterogeneity of Doping in Polycrystalline Boron-Doped Diamond Electrodes
- 2006Raman spectroscopy of Cs<SUB>2</SUB>HgBr<SUB>4</SUB> at high-pressure: effect of hydrostaticitycitations
- 2006Raman spectroscopy of Cs 2 HgBr 4 at high-pressure: effect of hydrostaticitycitations
- 2005The high-pressure structural phase transitions of sodium bismuth titanatecitations
- 2004Decomposition of LiGdF 4 scheelite at high pressurescitations
- 2003Quantification of Chemical Pressure in Doped Nanostructured Zirconia Ceramicscitations
- 2002X-ray diffraction study of WO 3 at high pressurecitations
- 2002X-ray diffraction study of WO<sub>3</sub> at high pressurecitations
- 2000Raman study of phases and stresses distributions in oxidation scales of Zirconim alloys: spectroscopic study of pressure and temperature effects on different nanometric Zirconia
Places of action
Organizations | Location | People |
---|
article
Raman Imaging and Kelvin Probe Microscopy for the Examination of the Heterogeneity of Doping in Polycrystalline Boron-Doped Diamond Electrodes
Abstract
The issue of the heterogeneity of boron doping in microcrystalline diamond films was addressed by four different methods: micro-Raman spectroscopy and Raman imaging, Kelvin probe force microscopy, conducting atomic force microscopy, and scanning electrochemical microscopy. The samples were commercially available films from Windsor Scientific, with an average boron concentration of about 5 × 10<sup>20</sup> cm<sup>-3</sup>. In agreement with previous works, all of the methods showed that the boron uptake was nonuniform across the surface of the electrode. Two different types of regions were evidenced, with metallic or semiconducting properties that were characterized with different types of Raman spectra. The line shape of these spectra was strongly dependent on the excitation wavelength. Local variations in electroactivity were evidenced by the SECM curves, which are related to the electronic properties of the individual grains, which, in turn, are governed by the boron content of the individual crystallites. In this study, two different micro-Raman imaging techniques were used that reveal the grain structure of the films: the images constructed from the diamond line intensity perfectly reproduced the optical image obtained by illuminating the sample in reflection. The method also allows detection of the presence of nondiamond carbon, especially in the metallic parts of the samples. Other spectral features (intensity of the boron-related broad lines, as well as the frequency and width of the diamond line) were used to construct images. In every case, the grain structure of the film was revealed, as well as twinning within individual crystallites. All approaches revealed that no enhanced doping or boron depletion occurred at the grain boundaries.