People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zygadło-Monikowska, Ewa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Magnesium tetraorganyl derivatives of group 13 metals as intermediate products in the synthesis of group 13 metal alkyls and arylscitations
- 2017Synthesis and properties of new carboxyborate lithium salts as electrolytes for lithium-ion batteriescitations
- 2015Synthesis and characterization of lithium-salt complexes with difluoroalkoxyborates for application as lithium electrolytescitations
- 2015Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium saltscitations
- 2014Lithium electrolytes based on modified imidazolium ionic liquidscitations
- 2013Benzoxaborolate ligands in group 13 metal complexescitations
- 2011Synthesis and characterization of new trifluoroalkoxyborates lithium salts of ionic liquid propertiescitations
- 2008Influence of plasticizer type on the properties of polymer electrolytes based on chitosancitations
- 2004Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium saltscitations
- 2003Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexescitations
- 2000The effect of solvent and proton donor type on the conductivity and physico-chemical properties of poly(vinylidene fluoride)-based proton-conducting gel electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts
Abstract
Solid polymeric electrolytes for battery purposes in the form of composites of lithium salts [LiI, LiN(CF3SO2)2, LiClO4, LiAlCl4, LiCF3SO3, and LiBF4] and acrylic polymeric matrixes [poly(acrylonitrile-co-butyl acrylate), poly(methyl methacrylate), and poly(butyl acrylate)] have been obtained by film casting from acetonitrile. The ionic conductivity (σ) as a function of temperature was studied by the impedance spectroscopy method. These systems show the highest σ values, on the order of 10-4−10-7 S·cm-1, at high salt concentrations (above 50 wt %), characteristic of polymer-in-salt electrolytes. The ionic conductivity and mechanical properties of composites depend on the chemical structure of the polymer matrix, the anion, and the salt concentration. The glass transition temperature (Tg) was determined from DSC studies. The introduction of a salt causes, in a majority of the composites studied, a considerable decrease in the Tg values, indicating a strong plasticizing effect. DSC studies show a multiphase character of the composites, in which, with the exception of the amorphous system with LiN(CF3SO2)2, phases of the plasticized matrix, complexes of the salt with the matrix of varying stoichiometry, and often the separating salt are observed. The logarithm of the decoupling index (log Rτ) on the order of 3−5 as well as the shift in the IR spectrum of the groups present in the polymer (C⋮N and CO) by about 20−30 cm-1 indicate a weak interaction of the salt with the matrix. The ion transference numbers (0.5−0.8) determined by the electrochemical method indicate an increased participation of cations in the electrical charge conduction and a different conduction mechanism compared to that of classical electrolytes based on complexes with polyethers.