Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pereira, Florbela

  • Google
  • 1
  • 1
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Estimation of Mayr Electrophilicity with a Quantitative Structure-Property Relationship Approach Using Empirical and DFT Descriptors24citations

Places of action

Chart of shared publication
Aires-De-Sousa, João
1 / 2 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Aires-De-Sousa, João
OrganizationsLocationPeople

article

Estimation of Mayr Electrophilicity with a Quantitative Structure-Property Relationship Approach Using Empirical and DFT Descriptors

  • Pereira, Florbela
  • Aires-De-Sousa, João
Abstract

Quantitative structure-property relationships (QSPRs) were investigated for the estimation of the Mayr electrophilicity parameter using a data set of 64 compounds, all currently available uncharged electrophiles in Mayr's Database of Reactivity Parameters. Three collections of empirical descriptors were employed, from Dragon, Adriana.Code, and CDK Models were built with multilinear regressions, k nearest neighbors, model trees, random forests, support vector machines (SVMs), associative neural networks, and counterpropagation neural networks. Quantum chemical descriptors were calculated with density functional theory (DFT) methods and incorporated in QSPR models. The best results were achieved with SVM using seven empirical and DFT descriptors; an R(2) of 0.92 was obtained for the test set (21 compounds). The final seven descriptors were the Parr electrophilicity index, epsilon(LUMO), hardness, and four CDK descriptors (FNSA-3, ATSc5, Kier2, and nAtomLAC). Screening of correlations between individual descriptors and Mayr electrophilicity revealed the highest absolute value of correlation for DFT epsilon(LUMO) (R = -0.82) and comparable correlations for some empirical descriptors, e.g., Dragon's folding degree index (R = -0.80), Kier flexibility index (R = -0.78), and Kier S2K index (R = -0.78). High correlations were observed in the training set between reactivity descriptors calculated by the PM6 semiempirical and DFT methods (R = 0.96 for epsilon(LUMO) and 0.94 for the electrophilicity index).

Topics
  • density
  • compound
  • theory
  • hardness
  • density functional theory
  • random