People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolosov, Oleg Victor
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Low Thermal Conductivity in Franckeite Heterostructurescitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2021Thermoelectric voltage modulation via backgate doping in graphene nanoconstrictions studied with STGM
- 2021SCANNING THERMAL MICROSCOPY OF 2D MATERIALS IN HIGH VACUUM ENVIRONMENT
- 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Filmscitations
- 2020Direct mapping of local Seebeck coefficient in 2D material nanostructures via scanning thermal gate microscopy
- 2019Visualisation of subsurface defects in van-der-Waals heterostructures via 3D SPM mapping
- 2018Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictionscitations
- 2018Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiationcitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in aircitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in air
- 2017Correlation of nano-scale electrical and topographical mapping of buried nanoscale semiconductor junctions
- 2017Imaging subsurface defects in WS2/WSe2 CVD flakes via Ultrasonic Force Microscopies
- 2017Subsurface imaging of stacking faults and dislocations in WS2 CVD grown flakes via Ultrasonic and Heterodyne Force Microscopy
- 2017Characterisation of local thermal properties in nanoscale structures by scanning thermal microscopy
- 2017Subsurface imaging of two-dimensional materials at the nanoscalecitations
- 2015Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depthscitations
- 2014Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxycitations
- 2014Nanomechanical morphology of amorphous, transition, and crystalline domains in phase change memory thin filmscitations
- 2014Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopycitations
- 2014How Deep Ultrasonic and Heterodyne Force Microscopies Can Look at the Nanostructure of 2D Materials?
- 2013Atomic force acoustic microscopy
- 2005Application specific integrated circuitry for controlling analysis of a fluid
- 2005Multiparameteric oil condition sensor based on the tuning fork technology for automotive applicationscitations
- 2004Application specific integrated circuitry for controlling analysis of a fluid
- 2003Local probing of thermal properties at submicron depths with megahertz photothermal vibrations.citations
- 2002Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer.citations
- 2000Nanoscale elastic imaging of aluminum/low-k dielectric interconnect structures
Places of action
Organizations | Location | People |
---|
article
Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films
Abstract
The realization of self-assembled molecular-electronic films, whose room-temperature transport properties are controlled by quantum interference (QI), is an essential step in the scale-up of QI effects from single molecules to parallel arrays of molecules. Recently, the effect of destructive QI (DQI) on the electrical conductance of self-assembled monolayers (SAMs) has been investigated. Here, through a combined experimental and theoretical investigation, we demonstrate chemical control of different forms of constructive QI (CQI) in cross-plane transport through SAMs and assess its influence on cross-plane thermoelectricity in SAMs. It is known that the electrical conductance of single molecules can be controlled in a deterministic manner, by chemically varying their connectivity to external electrodes. Here, by employing synthetic methodologies to vary the connectivity of terminal anchor groups around aromatic anthracene cores, and by forming SAMs of the resulting molecules, we clearly demonstrate that this signature of CQI can be translated into SAM-on-gold molecular films. We show that the conductance of vertical molecular junctions formed from anthracene-based molecules with two different connectivities differ by a factor of approximately 16, in agreement with theoretical predictions for their conductance ratio based on CQI effects within the core. We also demonstrate that for molecules with thioether anchor groups, the Seebeck coefficient of such films is connectivity dependent and with an appropriate choice of connectivity can be boosted by ∼50%. This demonstration of QI and its influence on thermoelectricity in SAMs represents a critical step toward functional ultra-thin-film devices for future thermoelectric and molecular-scale electronics applications