People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bao, Zhenan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Visualization of the distribution of covalently cross-linked hydrogels in CLARITY brain-polymer hybrids for different monomer concentrations.citations
- 2021Conducting Polymer‐Based Granular Hydrogels for Injectable 3D Cell Scaffolds
- 2020Understanding the Origin of Highly Selective CO2 Electroreduction to CO on Ni, N-doped Carbon Catalysts.citations
- 2020Air-Stability and Carrier Type in Conductive M3(Hexaaminobenzene)2, (M = Co, Ni, Cu).citations
- 2019Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells.citations
- 2018Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistorscitations
- 2016Direct Uniaxial Alignment of a Donor-Acceptor Semiconducting Polymer Using Single-Step Solution Shearing.citations
- 2015Structural and Electrical Investigation of C 60 –Graphene Vertical Heterostructurescitations
- 2015Ultrahigh electrical conductivity in solution-sheared polymeric transparent films.citations
- 2015Large-area formation of self-aligned crystalline domains of organic semiconductors on transistor channels using CONNECTcitations
- 2015Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymerscitations
- 2014One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin filmscitations
- 2014Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymercitations
- 2012Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivativescitations
- 2012Chemical and Engineering Approaches To Enable Organic Field-Effect Transistors for Electronic Skin Applicationscitations
- 2011Tuning charge transport in solution-sheared organic semiconductors using lattice straincitations
- 2010Highly sensitive flexible pressure sensors with microstructured rubber dielectric layerscitations
- 2009Self-Sorted Nanotube Networks on Polymer Dielectrics for Low-Voltage Thin-Film Transistorscitations
- 2009High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductorscitations
- 2009Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistorscitations
Places of action
Organizations | Location | People |
---|
article
Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells.
Abstract
Polymer aggregation and crystallization behavior play a crucial role in the performance of all-polymer solar cells (all-PSCs). Gaining control over polymer self-assembly via molecular design to influence bulk-heterojunction active-layer morphology, however, remains challenging. Herein, we show a simple yet effective way to modulate the self-aggregation of the commonly used naphthalene diimide (NDI)-based acceptor polymer (N2200), by systematically replacing a certain amount of alkyl side-chains with compact bulky side-chains (CBS). Specifically, we have synthesized a series of random copolymer (PNDI-CBSx) with different molar fractions (x = 0-1) of the CBS units and have found that both solution-phase aggregation and solid-state crystallinity of these acceptor polymers are progressively suppressed with increasing x as evidenced by UV-vis absorption, photoluminescence (PL) spectroscopies, thermal analysis, and grazing incidence X-ray scattering (GIWAXS) techniques. Importantly, as compared to the highly self-aggregating N2200, photovoltaic results show that blending of more amorphous acceptor polymers with donor polymer (PBDB-T) can enable all-PSCs with significantly increased PCE (up to 8.5%). The higher short-circuit current density (Jsc) results from the smaller polymer phase-separation domain sizes as evidenced by PL quenching and resonant soft X-ray scattering (R-SoXS) analyses. Additionally, we show that the lower crystallinity of the active layer is less sensitive to the film deposition methods. Thus, the transition from spin-coating to solution coating can be easily achieved with no performance losses. On the other hand, decreasing aggregation and crystallinity of the acceptor polymer too much reduces the photovoltaic performance as the donor phase-separation domain sizes increases. The highly amorphous acceptor polymers appear to induce formation of larger donor polymer crystallites. These results highlight the importance of a balanced aggregation strength between the donor and acceptor polymers to achieve high-performance all-PSCs with optimal active layer film morphology.