Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ten Eikelder, Huub

  • Google
  • 4
  • 9
  • 267

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Detailed approach to investigate thermodynamically controlled supramolecular copolymerizations31citations
  • 2019Equilibrium model for supramolecular copolymerizations48citations
  • 2019Equilibrium model for supramolecular copolymerizations48citations
  • 2018Supramolecular block copolymers under thermodynamic control140citations

Places of action

Chart of shared publication
Palmans, Ara Anja
3 / 36 shared
Windt, Lafayette N. J. De
1 / 2 shared
Markvoort, Albert
3 / 3 shared
Meijer, Ew Bert
2 / 48 shared
Markvoort, Bart
1 / 1 shared
Palmans, Anja
1 / 1 shared
Adelizzi, Beatrice
1 / 4 shared
Aloi, Antonio
1 / 2 shared
Voets, Ilja
1 / 9 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Palmans, Ara Anja
  • Windt, Lafayette N. J. De
  • Markvoort, Albert
  • Meijer, Ew Bert
  • Markvoort, Bart
  • Palmans, Anja
  • Adelizzi, Beatrice
  • Aloi, Antonio
  • Voets, Ilja
OrganizationsLocationPeople

article

Supramolecular block copolymers under thermodynamic control

  • Palmans, Ara Anja
  • Markvoort, Albert
  • Ten Eikelder, Huub
  • Aloi, Antonio
  • Meijer, Ew Bert
  • Voets, Ilja
Abstract

<p>Supramolecular block copolymers are becoming attractive materials in nascent optoelectronic and catalytic technologies. However, their dynamic nature precludes the straightforward tuning and analysis of the polymer's structure. Here we report the elucidation on the microstructure of triarylamine triamide-based supramolecular block copolymers through a comprehensive battery of spectroscopic, theoretical, and super-resolution microscopic techniques. Via spectroscopic analysis we demonstrate that the direct mixing of preassembled homopolymers and the copolymerization induced by slow cooling of monomers lead to the formation of the same copolymer's architecture. The small but pronounced deviation of the experimental spectra from the linear combination of the homopolymers' spectra hints at the formation of block copolymers. A mass balance model is introduced to further unravel the microstructure of the copolymers formed, and it confirms that stable multiblock supramolecular copolymers can be accessed from different routes. The multiblock structure of the supramolecular copolymers originates from the fine balance between favorable hydrogen-bonding interactions and a small mismatch penalty between two different monomers. Finally, we visualized the formation of the supramolecular block copolymers by adapting a recently developed super-resolution microscopy technique, interface point accumulation for imaging in nanoscale topography (iPAINT), for visualizing the architectures formed in organic media. Combining multiple techniques was crucial to unveil the microstructure of these complex dynamic supramolecular systems.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • Hydrogen
  • copolymer
  • homopolymer
  • block copolymer
  • microscopy