People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mishra, Nakul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by 13C2H-ADT Labeling.citations
- 2021Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by $^{13}$C$^2$H-ADT Labelingcitations
- 2021Vibrational Pertubation of the FeFe Hydrogenase H-Cluster Revealed by a C2H ADTcitations
- 2021Vibrational characterization of a diiron bridging hydride complex – a model for hydrogen catalysis
- 2017Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory.citations
Places of action
Organizations | Location | People |
---|
article
Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory.
Abstract
[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.