Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Zhanyong

  • Google
  • 9
  • 51
  • 1328

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2018Beyond the Active Site106citations
  • 2018Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework100citations
  • 2017Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires82citations
  • 2017Atomic layer deposition of Cu(i) oxide films using Cu(II) bis(dimethylamino-2-propoxide) and water26citations
  • 2017Metal-Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature230citations
  • 2017Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework320citations
  • 2016Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework302citations
  • 2016Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal-Organic Framework for Ethylene Dimerization84citations
  • 2016Regioselective Atomic Layer Deposition in Metal-Organic Frameworks Directed by Dispersion Interactions78citations

Places of action

Chart of shared publication
Ye, Jingyun
2 / 3 shared
Farha, Omar K.
8 / 23 shared
Noh, Hyunho
1 / 2 shared
Liao, Yijun
1 / 1 shared
Peters, Aaron W.
4 / 5 shared
Otake, Ken Ichi
1 / 2 shared
Hupp, Joseph T.
8 / 18 shared
Liu, Jian
1 / 26 shared
Gagliardi, Laura
6 / 16 shared
Gallington, Leighanne C.
4 / 9 shared
Lercher, Johannes A.
4 / 7 shared
Ferrandon, Magali
1 / 2 shared
Chapman, Karena W.
4 / 19 shared
Zheng, Jian
3 / 12 shared
Camaioni, Donald M.
3 / 4 shared
Vjunov, Aleksei
4 / 5 shared
Fulton, John L.
4 / 5 shared
Webber, Thomas E.
1 / 1 shared
Penn, R. Lee
1 / 4 shared
Platero-Prats, Ana E.
4 / 7 shared
Getman, Rachel B.
1 / 2 shared
Pellizzeri, Steven
1 / 2 shared
Vermeulen, Nicolaas A.
1 / 2 shared
Martinson, Alex B. F.
2 / 4 shared
Mavrantonakis, Andreas
1 / 3 shared
Kim, In Soo
2 / 4 shared
Schweitzer, Neil M.
4 / 4 shared
Stevens, Andrew J.
1 / 1 shared
League, Aaron B.
3 / 3 shared
Dohnalkova, Alice
1 / 1 shared
Balasubramanian, Mahalingam
1 / 1 shared
Browning, Nigel D.
2 / 13 shared
Mehdi, B. Layla
2 / 7 shared
Hupp, J. T.
1 / 2 shared
Farha, O. K.
1 / 2 shared
Martinson, A. B. F.
1 / 3 shared
Avila, J. R.
1 / 1 shared
Peters, A. W.
1 / 1 shared
Ortuño, M. A.
1 / 1 shared
Ortuño, Manuel A.
2 / 2 shared
Destefano, Matthew R.
1 / 1 shared
Sanchez-Sanchez, Maricruz
1 / 2 shared
Ikuno, Takaaki
1 / 1 shared
Pahls, Dale R.
1 / 1 shared
Ray, Debmalya
1 / 5 shared
Wang, Timothy C.
2 / 4 shared
Getsoian, Andrew Bean
1 / 1 shared
Miller, Jeffrey T.
1 / 5 shared
Carlson, Rebecca K.
1 / 1 shared
Liu, Wei Guang
1 / 2 shared
Yakovenko, Andrey A.
1 / 10 shared
Chart of publication period
2018
2017
2016

Co-Authors (by relevance)

  • Ye, Jingyun
  • Farha, Omar K.
  • Noh, Hyunho
  • Liao, Yijun
  • Peters, Aaron W.
  • Otake, Ken Ichi
  • Hupp, Joseph T.
  • Liu, Jian
  • Gagliardi, Laura
  • Gallington, Leighanne C.
  • Lercher, Johannes A.
  • Ferrandon, Magali
  • Chapman, Karena W.
  • Zheng, Jian
  • Camaioni, Donald M.
  • Vjunov, Aleksei
  • Fulton, John L.
  • Webber, Thomas E.
  • Penn, R. Lee
  • Platero-Prats, Ana E.
  • Getman, Rachel B.
  • Pellizzeri, Steven
  • Vermeulen, Nicolaas A.
  • Martinson, Alex B. F.
  • Mavrantonakis, Andreas
  • Kim, In Soo
  • Schweitzer, Neil M.
  • Stevens, Andrew J.
  • League, Aaron B.
  • Dohnalkova, Alice
  • Balasubramanian, Mahalingam
  • Browning, Nigel D.
  • Mehdi, B. Layla
  • Hupp, J. T.
  • Farha, O. K.
  • Martinson, A. B. F.
  • Avila, J. R.
  • Peters, A. W.
  • Ortuño, M. A.
  • Ortuño, Manuel A.
  • Destefano, Matthew R.
  • Sanchez-Sanchez, Maricruz
  • Ikuno, Takaaki
  • Pahls, Dale R.
  • Ray, Debmalya
  • Wang, Timothy C.
  • Getsoian, Andrew Bean
  • Miller, Jeffrey T.
  • Carlson, Rebecca K.
  • Liu, Wei Guang
  • Yakovenko, Andrey A.
OrganizationsLocationPeople

article

Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

  • Gallington, Leighanne C.
  • Ye, Jingyun
  • Schweitzer, Neil M.
  • Farha, Omar K.
  • Lercher, Johannes A.
  • Stevens, Andrew J.
  • Chapman, Karena W.
  • League, Aaron B.
  • Dohnalkova, Alice
  • Balasubramanian, Mahalingam
  • Zheng, Jian
  • Camaioni, Donald M.
  • Gagliardi, Laura
  • Vjunov, Aleksei
  • Fulton, John L.
  • Platero-Prats, Ana E.
  • Browning, Nigel D.
  • Mehdi, B. Layla
  • Li, Zhanyong
  • Hupp, Joseph T.
Abstract

<p>Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis, and difference envelope density analysis, with electron microscopy imaging and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO<sub>x</sub>H<sub>y</sub> clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield heterobimetallic metal-oxo nanowires. This bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering resistance of these clusters during the hydrogenation of light olefins.</p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • cluster
  • electron microscopy
  • drawing
  • x-ray absorption spectroscopy
  • sintering
  • atomic layer deposition