People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lemaire, Pc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2015Conformal and highly adsorptive metal-organic framework thin films via layer-by-layer growth on ALD-coated fiber matscitations
- 2015Facile Conversion of Hydroxy Double Salts to Metal-Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templatescitations
- 2014Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer depositioncitations
Places of action
Organizations | Location | People |
---|
article
Facile Conversion of Hydroxy Double Salts to Metal-Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates
Abstract
Rapid room-temperature synthesis of metal-organic frameworks (MOFs) is highly desired for industrial implementation and commercialization. Here we find that a (Zn,Cu) hydroxy double salt (HDS) intermediate formed in situ from ZnO particles or thin films enables rapid growth (3x10(4) kg.m(-3).d(-1), at least 1 order of magnitude greater than any prior report. The high anion exchange rate of (Zn,Cu) hydroxy nitrate HDS drives the ultrafast MOF formation. Similarly, we obtained Cu-BDC, ZIF-8, and IRMOF-3 structures from HDSs, demonstrating synthetic generality. Using ZnO thin films deposited via atomic layer deposition, MOF patterns are obtained on pre-patterned surfaces, and dense HKUST-1 coatings are grown onto various form factors, including polymer spheres, silicon wafers, and fibers. Breakthrough tests show that the MOF-functionalized fibers have high adsorption capacity for toxic gases. This rapid synthesis route is also promising for new MOF-based composite materials and applications