Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Presolski, S. I.

  • Google
  • 1
  • 5
  • 132

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Modular synthetic platform for the construction of functional single-chain polymeric nanoparticles132citations

Places of action

Chart of shared publication
Palmans, Ara Anja
1 / 36 shared
Albertazzi, Lorenzo
1 / 8 shared
Liu, Y.
1 / 99 shared
Pauloehrl, Th.
1 / 1 shared
Meijer, Ew Bert
1 / 48 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Palmans, Ara Anja
  • Albertazzi, Lorenzo
  • Liu, Y.
  • Pauloehrl, Th.
  • Meijer, Ew Bert
OrganizationsLocationPeople

article

Modular synthetic platform for the construction of functional single-chain polymeric nanoparticles

  • Palmans, Ara Anja
  • Albertazzi, Lorenzo
  • Liu, Y.
  • Presolski, S. I.
  • Pauloehrl, Th.
  • Meijer, Ew Bert
Abstract

<p>Single-chain polymeric nanoparticles (SCPNs) are intriguing systems for multiple applications. In order to arrive at a controlled, but random, positioning of the different side groups to the polymer backbone, alternative synthetic routes have to be developed. Here, a general postpolymerization modification strategy of poly(pentafluorophenyl acrylate) (pPFPA) is presented as a versatile method to rapidly access functional SCPNs. We first show that the sequential addition of a benzene-1,3,5-tricarboxamide-based amine, acting as the supramolecular recognition motif, and water-soluble polyetheramine (Jeffamine) to pPFPA affords random copolymers that fold in water into SCPNs. The scope of the modular platform is illustrated by preparing two types of functional SCPNs. First, we prepared SCPNs designed for bio-orthogonal catalysis by attaching pendant mono(benzimidazoylmethyl)-bis(pyridylmethyl) (Bimpy), phenanthroline (Phen), or 2,2′-bipyridine (BiPy), ligands capable of binding either Cu(I) or Pd(II). The Bimpy- and Phen-containing SCPNs ligated to Cu(I) significantly accelerate azide-alkyne cycloaddition reactions while Bipy-containing SCPNs ligated to Pd(II) efficiently catalyze depropargylation reactions. In all cases, reactions proceeded efficiently in phosphate buffer at a physiological pH and at low substrate concentrations. Next, the potential of SCPNs for photodynamic therapy was evaluated. Introducing porphyrins in SCPNs leads to novel photosensitizers that can produce singlet oxygen (<sup>1</sup>O<sub>2</sub>) upon photoirradiation. Additionally, by attaching both porphyrins and prodrug models, attached via <sup>1</sup>O<sub>2</sub>-cleavable amino-acrylate linker, to the SCPNs, we show that irradiation of the SCPNs results in a cascade reaction of <sup>1</sup>O<sub>2</sub> generation followed by cleavage of the amino-acrylate linkers, releasing the drug model. The modular synthesis strategy reported here provides rapid and controlled access to SCPNs with tunable amounts of active units that fulfill different functions.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • Oxygen
  • random
  • copolymer
  • amine
  • alkyne
  • random copolymer