Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gary, Alban De

  • Google
  • 1
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Factors Controlling Cage Escape Yields of Closed- and Open-Shell Metal Complexes in Bimolecular Photoinduced Electron Transfer4citations

Places of action

Chart of shared publication
Cristofaro, Silvia
1 / 2 shared
Salgado, Ana Karem Vega
1 / 1 shared
Olivier, Yoann
1 / 9 shared
Elias, Benjamin
1 / 2 shared
Troian-Gautier, Ludovic
1 / 7 shared
Valverde, Danillo
1 / 2 shared
Ripak, Alexia
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Cristofaro, Silvia
  • Salgado, Ana Karem Vega
  • Olivier, Yoann
  • Elias, Benjamin
  • Troian-Gautier, Ludovic
  • Valverde, Danillo
  • Ripak, Alexia
OrganizationsLocationPeople

article

Factors Controlling Cage Escape Yields of Closed- and Open-Shell Metal Complexes in Bimolecular Photoinduced Electron Transfer

  • Gary, Alban De
  • Cristofaro, Silvia
  • Salgado, Ana Karem Vega
  • Olivier, Yoann
  • Elias, Benjamin
  • Troian-Gautier, Ludovic
  • Valverde, Danillo
  • Ripak, Alexia
Abstract

<p>The cage escape yield, i.e., the separation of the geminate radical pair formed immediately after bimolecular excited-state electron transfer, was studied in 11 solvents using six Fe(III), Ru(II), and Ir(III) photosensitizers and tri-p-tolylamine as the electron donor. Among all complexes, the largest cage escape yields (0.67-1) were recorded for the Ir(III) photosensitizer, showing the highest potential as a photocatalyst in photoredox catalysis. These yields dropped to values around 0.65 for both Ru(II) photosensitizers and to values around 0.38 for the Os(II) photosensitizer. Interestingly, for both open-shell Fe(III) complexes, the yields were small (&lt;0.1) in solvents with dielectric constant greater than 20 but were shown to reach values up to 0.58 in solvents with low dielectric constants. The results presented herein on closed-shell photosensitizers suggest that the low rate of triplet-singlet intersystem crossing within the manifold of states of the geminate radical pair implies that charge recombination toward the ground state is a spin-forbidden process, favoring large cage escape yields that are not influenced by dielectric effects. Geminate charge recombination in open-shell metal complexes, such as the two Fe(III) photosensitizers studied herein, is no longer a spin-forbidden process and becomes highly sensitive to solvent effects. Altogether, this study provides general guidelines for factors influencing bimolecular excited-state reactivity using prototypical photosensitizers but also allows one to foresee a great development of Fe(III) photosensitizers with the <sup>2</sup>LMCT excited state in photoredox catalysis, providing that solvents with low dielectric constants are used.</p>

Topics
  • impedance spectroscopy
  • dielectric constant