Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wolf, Matthew J.

  • Google
  • 1
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024A Single Model for the Thermodynamics and Kinetics of Metal Exsolution from Perovskite Oxides7citations

Places of action

Chart of shared publication
Parker, Stephen C.
1 / 33 shared
Klein, Andreas
1 / 25 shared
Souza, Roger A. De
1 / 5 shared
Wu, Ji
1 / 2 shared
Bonkowski, Alexander
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Parker, Stephen C.
  • Klein, Andreas
  • Souza, Roger A. De
  • Wu, Ji
  • Bonkowski, Alexander
OrganizationsLocationPeople

article

A Single Model for the Thermodynamics and Kinetics of Metal Exsolution from Perovskite Oxides

  • Parker, Stephen C.
  • Klein, Andreas
  • Souza, Roger A. De
  • Wu, Ji
  • Bonkowski, Alexander
  • Wolf, Matthew J.
Abstract

<p>Exsolution has emerged as an outstanding route for producing oxide-supported metal nanoparticles. For ABO<sub>3</sub>-perovskite oxides, various late transition-metal cations can be substituted into the lattice under oxidizing conditions and exsolved as metal nanoparticles after reduction. A consistent and comprehensive description of the point-defect thermodynamics and kinetics of this phenomenon is lacking, however. Herein, supported by hybrid density-functional-theory calculations, we propose a single model that explains diverse experimental observations, such as why substituent transition-metal cations (but not host cations) exsolve from perovskite oxides upon reduction; why different substituent transition-metal cations exsolve under different conditions; why the metal nanoparticles are embedded in the surface; why exsolution occurs surprisingly rapidly at relatively low temperatures; and why the reincorporation of exsolved species involves far longer times and much higher temperatures. Our model’s foundation is that the substituent transition-metal cations are reduced to neutral species within the perovskite lattice as the Fermi level is shifted upward within the bandgap upon sample reduction. The calculations also indicate unconventional influences of oxygen vacancies and A-site vacancies. Our model thus provides a fundamental basis for improving existing, and creating new, exsolution-generated catalysts.</p>

Topics
  • nanoparticle
  • density
  • perovskite
  • impedance spectroscopy
  • surface
  • theory
  • Oxygen
  • defect