People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gee, Leland B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Time-Resolved X-ray Emission Spectroscopy and Synthetic High-Spin Model Complexes Resolve Ambiguities in Excited-State Assignments of Transition-Metal Chromophores: A Case Study of Fe-Amido Complexes.citations
- 2023X-ray Spectroscopic Study of the Electronic Structure of a Trigonal High-Spin Fe(IV)═O Complex Modeling Non-Heme Enzyme Intermediates and Their Reactivity.citations
- 2023X-ray Spectroscopic Study of the Electronic Structure of a Trigonal High-Spin Fe(IV)═O Complex Modeling Non-Heme Enzyme Intermediates and Their Reactivitycitations
- 2021Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by 13C2H-ADT Labeling.citations
- 2021Vibrational characterization of a diiron bridging hydride complex – a model for hydrogen catalysis
- 2021Short-lived metal-centered excited state initiates iron-methionine photodissociation in ferrous cytochrome c.citations
- 2018High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT
- 2017Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O-2-tolerant NAD(+)-reducing [NiFe] hydrogenase
- 2017Direct Observation of an Iron-Bound Terminal Hydride in [FeFe]-Hydrogenase by Nuclear Resonance Vibrational Spectroscopycitations
- 2016Synthesis and vibrational spectroscopy of Fe-57-labeled models of [NiFe] hydrogenase: first direct observation of a nickel-iron interaction
- 2014Synthesis and vibrational spectroscopy of Fe-57-labeled models of [NiFe] hydrogenase: first direct observation of a nickel-iron interactioncitations
Places of action
Organizations | Location | People |
---|
article
Time-Resolved X-ray Emission Spectroscopy and Synthetic High-Spin Model Complexes Resolve Ambiguities in Excited-State Assignments of Transition-Metal Chromophores: A Case Study of Fe-Amido Complexes.
Abstract
To fully harness the potential of abundant metal coordination complex photosensitizers, a detailed understanding of the molecular properties that dictate and control the electronic excited-state population dynamics initiated by light absorption is critical. In the absence of detectable luminescence, optical transient absorption (TA) spectroscopy is the most widely employed method for interpreting electron redistribution in such excited states, particularly for those with a charge-transfer character. The assignment of excited-state TA spectral features often relies on spectroelectrochemical measurements, where the transient absorption spectrum generated by a metal-to-ligand charge-transfer (MLCT) electronic excited state, for instance, can be approximated using steady-state spectra generated by electrochemical ligand reduction and metal oxidation and accounting for the loss of absorptions by the electronic ground state. However, the reliability of this approach can be clouded when multiple electronic configurations have similar optical signatures. Using a case study of Fe(II) complexes supported by benzannulated diarylamido ligands, we highlight an example of such an ambiguity and show how time-resolved X-ray emission spectroscopy (XES) measurements can reliably assign excited states from the perspective of the metal, particularly in conjunction with accurate synthetic models of ligand-field electronic excited states, leading to a reinterpretation of the long-lived excited state as a ligand-field metal-centered quintet state. A detailed analysis of the XES data on the long-lived excited state is presented, along with a discussion of the ultrafast dynamics following the photoexcitation of low-spin Fe(II)-Namido complexes using a high-spin ground-state analogue as a spectral model for the 5T2 excited state.