People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wu, Jianchang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Inverse design workflow discovers hole-transport materials tailored for perovskite solar cellscitations
- 2024Inverse design workflow discovers hole-transport materials tailored for perovskite solar cellscitations
- 2024Self-driving AMADAP laboratory: Accelerating the discovery and optimization of emerging perovskite photovoltaicscitations
- 2024Unveiling the Role of BODIPY Dyes as Small‐Molecule Hole Transport Material in Inverted Planar Perovskite Solar Cellscitations
- 2023Enhancing Planar Inverted Perovskite Solar Cells with Innovative Dumbbell‐Shaped HTMs: A Study of Hexabenzocoronene and Pyrene‐BODIPY‐Triarylamine Derivativescitations
- 2023Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approachescitations
- 2023Optimizing Perovskite Thin‐Film Parameter Spaces with Machine Learning‐Guided Robotic Platform for High‐Performance Perovskite Solar Cellscitations
Places of action
Organizations | Location | People |
---|
document
Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approaches
Abstract
High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of the molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle “Like dissolves like,” we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electronic properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production.