Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bizzotto, Francesco

  • Google
  • 6
  • 39
  • 148

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering16citations
  • 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering:Influence of Precursors and Cations on the Reaction Pathway16citations
  • 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering:Influence of Precursors and Cations on the Reaction Pathway16citations
  • 2021The Gas Diffusion Electrode Setup as Straightforward Testing Device for Proton Exchange Membrane Water Electrolyzer Catalystscitations
  • 2021Bifunctional Pt-IrO2Catalysts for the Oxygen Evolution and Oxygen Reduction Reactions58citations
  • 2020The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalysts42citations

Places of action

Chart of shared publication
Simonsen, Søren Bredmose
1 / 26 shared
Jensen, Kirsten M. Ø.
3 / 19 shared
Rossmeisl, Jan
3 / 51 shared
Kirkensgaard, Jacob J. K.
3 / 11 shared
Kinnibrugh, Tiffany L.
3 / 4 shared
Arenz, Matthias
6 / 23 shared
Dworzak, Alexandra
4 / 6 shared
Quinson, Jonathan
6 / 22 shared
Schröder, Johanna
4 / 6 shared
Kuhn, Luise Theil
2 / 30 shared
Cooper, Susan R.
3 / 4 shared
Pedersen, Jack K.
3 / 10 shared
Oezaslan, Mehtap
4 / 16 shared
Wang, Baiyu
3 / 7 shared
Mathiesen, Jette Katja
1 / 4 shared
Kjær, Emil T. S.
3 / 8 shared
Blaseio, Sonja
3 / 3 shared
Simonsen, Søren B.
2 / 5 shared
Mathiesen, Jette K.
2 / 6 shared
Theil Kuhn, Luise
1 / 1 shared
Mints, Vladislav A.
1 / 3 shared
Bornet, Aline
1 / 2 shared
Wiberg, Gustav
1 / 1 shared
Tovini, Mohammad Fathi
1 / 1 shared
Berner, Etienne
1 / 1 shared
Sayed, Hany El
1 / 1 shared
Zana, Alessandro
2 / 5 shared
Zhang, Damin
1 / 3 shared
Du, Jia
1 / 7 shared
Kibsgaard, Jakob
1 / 15 shared
Dosche, Carsten
1 / 5 shared
Speck, Florian D.
1 / 9 shared
Cherevko, Serhiy
1 / 22 shared
Secher, Niklas Mørch
1 / 3 shared
Inaba, Masanori
1 / 3 shared
Paul, Michael T. Y.
1 / 3 shared
Chorkendorff, Ib
1 / 97 shared
Sandbeck, Daniel J. S.
1 / 1 shared
Sørensen, Jakob Ejler
1 / 3 shared
Chart of publication period
2023
2021
2020

Co-Authors (by relevance)

  • Simonsen, Søren Bredmose
  • Jensen, Kirsten M. Ø.
  • Rossmeisl, Jan
  • Kirkensgaard, Jacob J. K.
  • Kinnibrugh, Tiffany L.
  • Arenz, Matthias
  • Dworzak, Alexandra
  • Quinson, Jonathan
  • Schröder, Johanna
  • Kuhn, Luise Theil
  • Cooper, Susan R.
  • Pedersen, Jack K.
  • Oezaslan, Mehtap
  • Wang, Baiyu
  • Mathiesen, Jette Katja
  • Kjær, Emil T. S.
  • Blaseio, Sonja
  • Simonsen, Søren B.
  • Mathiesen, Jette K.
  • Theil Kuhn, Luise
  • Mints, Vladislav A.
  • Bornet, Aline
  • Wiberg, Gustav
  • Tovini, Mohammad Fathi
  • Berner, Etienne
  • Sayed, Hany El
  • Zana, Alessandro
  • Zhang, Damin
  • Du, Jia
  • Kibsgaard, Jakob
  • Dosche, Carsten
  • Speck, Florian D.
  • Cherevko, Serhiy
  • Secher, Niklas Mørch
  • Inaba, Masanori
  • Paul, Michael T. Y.
  • Chorkendorff, Ib
  • Sandbeck, Daniel J. S.
  • Sørensen, Jakob Ejler
OrganizationsLocationPeople

article

Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering

  • Simonsen, Søren Bredmose
  • Jensen, Kirsten M. Ø.
  • Rossmeisl, Jan
  • Kirkensgaard, Jacob J. K.
  • Kinnibrugh, Tiffany L.
  • Arenz, Matthias
  • Dworzak, Alexandra
  • Quinson, Jonathan
  • Schröder, Johanna
  • Kuhn, Luise Theil
  • Cooper, Susan R.
  • Pedersen, Jack K.
  • Oezaslan, Mehtap
  • Wang, Baiyu
  • Mathiesen, Jette Katja
  • Kjær, Emil T. S.
  • Bizzotto, Francesco
  • Blaseio, Sonja
Abstract

Iridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from Ir<i><sub>x</sub></i>Cl<i><sub>y</sub></i> precursors investigated here. We use <i>in situ</i> X-ray total scattering (TS) experiments with pair distribution function (PDF) analysis to study a simple, surfactant-free synthesis of colloidal iridium nanoparticles. The reaction is performed in methanol at 50 °C with only a base and an iridium salt as precursor. From different precursor salts─IrCl<sub>3</sub>, IrCl<sub>4</sub>, H<sub>2</sub>IrCl<sub>6</sub>, or Na<sub>2</sub>IrCl<sub>6</sub>─colloidal nanoparticles as small as Ir<sub>∼55</sub> are obtained as the final product. The nanoparticles do not show the bulk iridium face-centered cubic (<i>fcc</i>) structure but show decahedral and icosahedral structures. The formation route is highly dependent on the precursor salt used. Using IrCl<sub>3</sub> or IrCl<sub>4</sub>, metallic iridium nanoparticles form rapidly from Ir<sub><i>x</i></sub>Cl<sub><i>y</i></sub><i><sup>n-</sup></i> complexes, whereas using H<sub>2</sub>IrCl<sub>6</sub> or Na<sub>2</sub>IrCl<sub>6</sub>, the iridium nanoparticle formation follows a sudden growth after an induction period and the brief appearance of a crystalline phase. With H<sub>2</sub>IrCl<sub>6</sub>, the formation of different Ir<sub><i>n</i></sub> (<i>n</i> = 55, 55, 85, and 116) nanoparticles depends on the nature of the cation in the base (LiOH, NaOH, KOH, or CsOH, respectively) and larger particles are obtained with larger cations. As the particles grow, the nanoparticle structure changes from partly icosahedral to decahedral. The results show that the synthesis of iridium nanoparticles from Ir<sub><i>x</i></sub>Cl<sub><i>y</i></sub> is a valuable iridium nanoparticle model system, which can provide new compositional and structural insights into iridium nanoparticle formation and growth.

Topics
  • nanoparticle
  • impedance spectroscopy
  • experiment
  • crystalline phase
  • Platinum
  • gold
  • surfactant
  • Iridium