People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bent, Stacey F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2023Area-Selective Deposition by Cyclic Adsorption and Removal of 1-Nitropropane.citations
- 2022Elucidating the Reaction Mechanism of Atomic Layer Deposition of Al2O3 with a Series of Al(CH3)xCl3-x and Al(CyH2y+1)3 Precursors.citations
- 2022The Importance of Decarbonylation Mechanisms in the Atomic Layer Deposition of High-Quality Ru Films by Zero-Oxidation State Ru(DMBD)(CO)3.citations
- 2022Ionic Liquid-Mediated Route to Atomic Layer Deposition of Tin(II) Oxide via a C-C Bond Cleavage Ligand Modification Mechanism.citations
- 2021Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniquescitations
- 2021Monolayer Support Control and Precise Colloidal Nanocrystals Demonstrate Metal-Support Interactions in Heterogeneous Catalysts.citations
- 2020Substrate-Dependent Study of Chain Orientation and Order in Alkylphosphonic Acid Self-Assembled Monolayers for ALD Blocking.citations
- 2020Understanding chemical and physical mechanisms in atomic layer deposition.citations
- 2019A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements.citations
- 2019A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurementscitations
- 2019Understanding Structure-Property Relationships of MoO3-Promoted Rh Catalysts for Syngas Conversion to Alcohols.citations
- 2019Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: a reviewcitations
- 2018Area-selective atomic layer deposition of metal oxides on noble metals through catalytic oxygen activationcitations
- 2018Molecular Layer Deposition of a Highly Stable Silicon Oxycarbide Thin Film Using an Organic Chlorosilane and Watercitations
- 2017Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenatescitations
- 2016Selective Deposition of Dielectrics: Limits and Advantages of Alkanethiol Blocking Agents on Metal-Dielectric Patterns.
- 2016Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaicscitations
- 2016Selective Deposition of Dielectrics: Limits and Advantages of Alkanethiol Blocking Agents on Metal-Dielectric Patternscitations
- 2016A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantationcitations
- 2016Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer depositioncitations
- 2015Quantifying Geometric Strain at the PbS QD-TiO2 Anode Interface and Its Effect on Electronic Structurescitations
- 2014An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysiscitations
- 2014Nanoscale limitations in metal oxide electrocatalysts for oxygen evolutioncitations
- 2013Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.citations
- 2013Area Selective Molecular Layer Deposition of Polyurea Filmscitations
- 2012The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cellscitations
- 2011Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructurescitations
- 2010ALD Growth Characteristics of ZnS Films Deposited from Organozinc and Hydrogen Sulfide Precursorscitations
- 2010Formation of Organic Nanoscale Laminates and Blends by Molecular Layer Depositioncitations
- 2004A density functional theory study on the effect of Ge alloying on hydrogen desorption from SiGe alloy surfacescitations
Places of action
Organizations | Location | People |
---|
article
Ionic Liquid-Mediated Route to Atomic Layer Deposition of Tin(II) Oxide via a C-C Bond Cleavage Ligand Modification Mechanism.
Abstract
Atomic layer deposition (ALD) is a technologically important method to grow thin films with high conformality and excellent thickness control from vapor phase precursors. The development of new thermal ALD processes can be limited by precursor reactivity and stability: reaction temperature and precursor design are among the few variables available to achieve higher reactivity in gas-phase reactions, unlike in solution synthesis, where the use of solvent and/or a catalyst can promote a desired reaction. To bridge this synthesis gap between vapor-phase and solution-phase, we demonstrate the use of an ultrathin coating layer of a vapor phase-compatible solvent─an ionic liquid (IL)─on our growth substrate to perform ALD of SnO. Successful SnO deposition is achieved using tin acetylacetonate and water, a process that otherwise would require a stronger counter-reactant such as ozone. The presence of the layer of IL allows a solvent-mediated reaction mechanism to take place on the growth substrate surface. We report a growth per cycle of 0.67 A/cycle at a deposition temperature of 100 °C in an IL comprising 1-ethyl-3-methylimidazolium hydrogen sulfate. Characterization of the ALD films confirms the SnO film composition, and 1H and 13C NMR are used to probe the solvent-mediated ALD reaction, suggesting a solvent-mediated addition-elimination-type mechanism which breaks a C-C bond in acetylacetonate to form acetone and acetate. Density functional theory calculations show that the IL solvent is beneficial to the proposed solvent-mediated mechanism by lowering the C-C bond cleavage energetics of acetylacetonate compared to the vapor phase. A general class of ligand modification reactions for thermal ALD is thus introduced in this work.