People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cherevko, Serhiy
Forschungszentrum Jülich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Operando Fe dissolution in Fe–N–C electrocatalysts during acidic oxygen reduction: Impact of local pH changecitations
- 2023Isopropanol electro-oxidation on Pt-Ru-Ircitations
- 2022Graphene-derived carbon support boosts proton exchange membrane fuel cell catalyst stabilitycitations
- 2022Atomistic Insights into Activation and Degradation of La0.6Sr0.4CoO3-δElectrocatalysts under Oxygen Evolution Conditionscitations
- 2022Catalyst Dissolution Analysis in PEM Water Electrolyzers during Intermittent Operationcitations
- 2022Hydrogen evolution in alkaline medium on intratube and surface decorated PtRu catalystcitations
- 2022Atomistic Insights into Activation and Degradation of La0.6Sr0.4CoO3−δ Electrocatalysts under Oxygen Evolution Conditionscitations
- 2022High-throughput exploration of activity and stability for identifying photoelectrochemical water splitting materialscitations
- 2021Electrocatalytic oxidation of 2-propanol on PtxIr100-x bifunctional electrocatalysts - aA thin-film materials library studycitations
- 2020Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditionscitations
- 2020Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzerscitations
- 2020Fabrication of a Robust PEM Water Electrolyzer Based on Non‐Noble Metal Cathode Catalyst: [Mo<sub>3</sub>S<sub>13</sub>]<sup>2−</sup> Clusters Anchored to N‐Doped Carbon Nanotubescitations
- 2020The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalystscitations
- 2020Fabrication of a Robust PEM Water Electrolyzer Based on Non‐Noble Metal Cathode Catalyst: [Mo3S13]2− Clusters Anchored to N‐Doped Carbon Nanotubes
- 2020Improved Hydrogen Oxidation Reaction Activity and Stability of Buried Metal-Oxide Electrocatalyst Interfacescitations
- 2020Improved Hydrogen Oxidation Reaction Activity and Stability of Buried Metal-Oxide Electrocatalyst Interfacescitations
- 2018Using Instability of a Non-stoichiometric Mixed Oxide Oxygen Evolution Catalyst As a Tool to Improve Its Electrocatalytic Performancecitations
- 2018The stability number as a metric for electrocatalyst stability benchmarkingcitations
- 2017Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous productioncitations
- 2016Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reactioncitations
- 2016Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stabilitycitations
- 2014Hierarchical nanoporous films obtained by surface cracking on Cu-Au and ethanethiol on Au(001)citations
Places of action
Organizations | Location | People |
---|
article
Atomistic Insights into Activation and Degradation of La0.6Sr0.4CoO3-δElectrocatalysts under Oxygen Evolution Conditions
Abstract
<p>The stability of perovskite oxide catalysts for the oxygen evolution reaction (OER) plays a critical role in their applicability in water splitting concepts. Decomposition of perovskite oxides under applied potential is typically linked to cation leaching and amorphization of the material. However, structural changes and phase transformations at the catalyst surface were also shown to govern the activity of several perovskite electrocatalysts under applied potential. Hence, it is crucial for the rational design of durable perovskite catalysts to understand the interplay between the formation of active surface phases and stability limitations under OER conditions. In the present study, we reveal a surface-dominated activation and deactivation mechanism of the prominent electrocatalyst La0.6Sr0.4CoO3-δ under steady-state OER conditions. Using a multiscale microscopy and spectroscopy approach, we identify the evolving Co-oxyhydroxide as catalytically active surface species and La-hydroxide as inactive species involved in the transient degradation behavior of the catalyst. While the leaching of Sr results in the formation of mixed surface phases, which can be considered as a part of the active surface, the gradual depletion of Co from a self-assembled active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite catalyst under applied potential. </p>