Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jin, Wenlong

  • Google
  • 3
  • 30
  • 349

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Synthetic nuances to maximize n-type organic electrochemical transistor and thermoelectric performance in fused lactam polymers98citations
  • 2022Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers153citations
  • 2022Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers.98citations

Places of action

Chart of shared publication
Marks, Adam
1 / 3 shared
Rashid, Reem B.
2 / 3 shared
Rivnay, Jonathan
2 / 10 shared
Ji, Xudong
2 / 3 shared
Costantini, Giovanni
2 / 21 shared
Wu, Ruiheng
2 / 2 shared
Griggs, Sophie
2 / 9 shared
Moser, Maximilian
2 / 12 shared
Bristow, Helen
2 / 8 shared
Chen, Xingxing
2 / 6 shared
Gasparini, Nicola
2 / 20 shared
Wu, Xiaocui
2 / 4 shared
Strzalka, Joseph
2 / 4 shared
Mcculloch, Iain
2 / 44 shared
Paulsen, Bryan D.
2 / 6 shared
Fabiano, Simone
3 / 34 shared
Meli, Dilara
2 / 2 shared
Kolhe, Nagesh B.
1 / 3 shared
Berggren, Magnus
1 / 44 shared
Stoeckel, Marc-Antoine
1 / 3 shared
Savvakis, Marios
1 / 1 shared
Li, Qifan
1 / 3 shared
Tu, Deyu
1 / 2 shared
Wu, Ziang
1 / 2 shared
Strakosas, Xenofon
1 / 1 shared
Jenekhe, Samson A.
1 / 6 shared
Yang, Chiyuan
1 / 4 shared
Wu, Hanyan
1 / 2 shared
Woo, Han Young
1 / 6 shared
Kroon, Renee
1 / 28 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Marks, Adam
  • Rashid, Reem B.
  • Rivnay, Jonathan
  • Ji, Xudong
  • Costantini, Giovanni
  • Wu, Ruiheng
  • Griggs, Sophie
  • Moser, Maximilian
  • Bristow, Helen
  • Chen, Xingxing
  • Gasparini, Nicola
  • Wu, Xiaocui
  • Strzalka, Joseph
  • Mcculloch, Iain
  • Paulsen, Bryan D.
  • Fabiano, Simone
  • Meli, Dilara
  • Kolhe, Nagesh B.
  • Berggren, Magnus
  • Stoeckel, Marc-Antoine
  • Savvakis, Marios
  • Li, Qifan
  • Tu, Deyu
  • Wu, Ziang
  • Strakosas, Xenofon
  • Jenekhe, Samson A.
  • Yang, Chiyuan
  • Wu, Hanyan
  • Woo, Han Young
  • Kroon, Renee
OrganizationsLocationPeople

article

Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers.

  • Jin, Wenlong
  • Rashid, Reem B.
  • Rivnay, Jonathan
  • Ji, Xudong
  • Costantini, Giovanni
  • Wu, Ruiheng
  • Griggs, Sophie
  • Moser, Maximilian
  • Bristow, Helen
  • Chen, Xingxing
  • Gasparini, Nicola
  • Wu, Xiaocui
  • Strzalka, Joseph
  • Mcculloch, Iain
  • Paulsen, Bryan D.
  • Fabiano, Simone
  • Meli, Dilara
Abstract

A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 * 10-2 cm2 V-1 s-1 and a muC* figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 muW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.

Topics
  • impedance spectroscopy
  • polymer
  • mobility
  • electrical conductivity