People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abild-Pedersen, Frank
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Application of machine learning to discover new intermetallic catalysts for the hydrogen evolution and the oxygen reduction reactionscitations
- 2022Colloidal Platinum-Copper Nanocrystal Alloy Catalysts Surpass Platinum in Low-Temperature Propene Combustion.citations
- 2021Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to COcitations
- 2021Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration.citations
- 2019Understanding Structure-Property Relationships of MoO3-Promoted Rh Catalysts for Syngas Conversion to Alcohols.citations
- 2017Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenatescitations
- 2017Mechanistic insights into heterogeneous methane activationcitations
- 2015Surface Tension Effects on the Reactivity of Metal Nanoparticlescitations
- 2014Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanolcitations
- 2013Density functional theory studies of transition metal nanoparticles in catalysis
- 2012CO hydrogenation to methanol on Cu–Ni catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalysts:Theory and experimentcitations
- 2011On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxidescitations
- 2009A CATALYST, A PROCESS FOR SELECTIVE HYDROGENATION OF ACETYLENE TO ETHYLENE AND A METHOD FOR THE MANUFACTURE OF THE CATALYST
- 2008Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylenecitations
- 2004Atomic-scale imaging of carbon nanofibre growthcitations
Places of action
Organizations | Location | People |
---|
article
Colloidal Platinum-Copper Nanocrystal Alloy Catalysts Surpass Platinum in Low-Temperature Propene Combustion.
Abstract
Low-temperature removal of noxious environmental emissions plays a critical role in minimizing the harmful effects of hydrocarbon fuels. Emission-control catalysts typically consist of large quantities of rare, noble metals (e.g., platinum and palladium), which are expensive and environmentally damaging metals to extract. Alloying with cheaper base metals offers the potential to boost catalytic activity while optimizing the use of noble metals. In this work, we show that PtxCu100-x catalysts prepared from colloidal nanocrystals are more active than the corresponding Pt catalysts for complete propene oxidation. By carefully controlling their composition while maintaining nanocrystal size, alloys with dilute Cu concentrations (15-30% atomic fraction) demonstrate promoted activity compared to pure Pt. Complete propene oxidation was observed at temperatures as low as 150 °C in the presence of steam, and five to ten times higher turnover frequencies were found compared to monometallic Pt catalysts. Through DFT studies and structural and catalytic characterization, the remarkable activity of dilute PtxCu100-x alloys was related to the tuning of the electronic structure of Pt to reach optimal binding energies of C* and O* intermediates. This work provides a general approach toward investigation of structure-property relationships of alloyed catalysts with efficient and optimized use of noble metals.