Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yager, Kevin G.

  • Google
  • 1
  • 2
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Molecular Weight Dependence of Block Copolymer Micelle Fragmentation Kinetics21citations

Places of action

Chart of shared publication
Early, Julia T.
1 / 3 shared
Block, Alison
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Early, Julia T.
  • Block, Alison
OrganizationsLocationPeople

article

Molecular Weight Dependence of Block Copolymer Micelle Fragmentation Kinetics

  • Early, Julia T.
  • Yager, Kevin G.
  • Block, Alison
Abstract

<p>The effect of molecular weight (M) on the fragmentation kinetics of micelles formed by 1,2-polybutadiene-block-poly(ethylene oxide) (PB-PEO) copolymers was studied in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A series of six samples, with total M ranging from 104 to 105 g mol-1 and nearly constant composition (fPEO ≈ 0.4), were examined; all six formed spherical micelles with PEO coronas. Nonequilibrium PB-PEO micelles were prepared by direct dissolution, a process that systematically produces nanoparticles with mean aggregation numbers more than twice the equilibrium values. When subjected to high temperature annealing (170 °C), the average micelle radius was found to decrease substantially, as determined by temperature-jump dynamic light scattering (T-jump DLS) and time-resolved small-angle X-ray scattering (TR-SAXS). The characteristic fragmentation times (τ) were found to increase strongly with increasing degree of polymerization N, as τ ∼N1.8. This result compares favorably with the prediction of a previously untested model.</p>

Topics
  • nanoparticle
  • annealing
  • molecular weight
  • copolymer
  • block copolymer
  • small angle x-ray scattering
  • dynamic light scattering