Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stupp, Samuel I.

  • Google
  • 3
  • 29
  • 127

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Hybrid Bonding Bottlebrush Polymers Grafted from a Supramolecular Polymer Backbone6citations
  • 2021Allomelanin57citations
  • 2012Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells64citations

Places of action

Chart of shared publication
Egner, Simon A.
1 / 1 shared
Yang, Yang
1 / 26 shared
Gianneschi, Nathan C.
2 / 5 shared
Sai, Hiroaki
1 / 6 shared
Syrgiannis, Zois
1 / 7 shared
Palmer, Liam C.
1 / 1 shared
Grzybek, Joseph
1 / 1 shared
Roan, Joshua J.
1 / 1 shared
Sun, Hao
1 / 4 shared
Weigand, Steven J.
1 / 1 shared
Gnanasekaran, Karthikeyan
1 / 1 shared
Battistella, Claudia
1 / 1 shared
Farha, Omar K.
1 / 23 shared
Barnes, Brooke E.
1 / 1 shared
Abeyratne-Perera, Hashanthi
1 / 1 shared
Moore, Martin H.
1 / 2 shared
Siwicka, Zofia E.
1 / 1 shared
Forman, Christopher J.
1 / 1 shared
Mccallum, Naneki C.
1 / 1 shared
Son, Florencia A.
1 / 1 shared
Zhou, Xuhao
1 / 1 shared
Wang, Zheng
1 / 3 shared
Savin, Daniel A.
1 / 2 shared
Johnson, Brandy J.
1 / 1 shared
Vora, Gary J.
1 / 1 shared
Aparicio, Conrado
1 / 42 shared
Goldberger, Joshua E.
1 / 1 shared
Cui, Honggang
1 / 3 shared
Sargeant, Timothy D.
1 / 1 shared
Chart of publication period
2024
2021
2012

Co-Authors (by relevance)

  • Egner, Simon A.
  • Yang, Yang
  • Gianneschi, Nathan C.
  • Sai, Hiroaki
  • Syrgiannis, Zois
  • Palmer, Liam C.
  • Grzybek, Joseph
  • Roan, Joshua J.
  • Sun, Hao
  • Weigand, Steven J.
  • Gnanasekaran, Karthikeyan
  • Battistella, Claudia
  • Farha, Omar K.
  • Barnes, Brooke E.
  • Abeyratne-Perera, Hashanthi
  • Moore, Martin H.
  • Siwicka, Zofia E.
  • Forman, Christopher J.
  • Mccallum, Naneki C.
  • Son, Florencia A.
  • Zhou, Xuhao
  • Wang, Zheng
  • Savin, Daniel A.
  • Johnson, Brandy J.
  • Vora, Gary J.
  • Aparicio, Conrado
  • Goldberger, Joshua E.
  • Cui, Honggang
  • Sargeant, Timothy D.
OrganizationsLocationPeople

article

Allomelanin

  • Weigand, Steven J.
  • Gnanasekaran, Karthikeyan
  • Gianneschi, Nathan C.
  • Battistella, Claudia
  • Farha, Omar K.
  • Barnes, Brooke E.
  • Abeyratne-Perera, Hashanthi
  • Moore, Martin H.
  • Siwicka, Zofia E.
  • Forman, Christopher J.
  • Mccallum, Naneki C.
  • Son, Florencia A.
  • Zhou, Xuhao
  • Wang, Zheng
  • Stupp, Samuel I.
  • Savin, Daniel A.
  • Johnson, Brandy J.
  • Vora, Gary J.
Abstract

<p>Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m2/g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • Nitrogen
  • electron microscopy
  • porosity
  • biological material
  • small angle x-ray scattering