People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcinnes, Eric J. L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Metal-carbon bonding in early lanthanide substituted cyclopentadienyl complexes probed by pulsed EPR spectroscopycitations
- 2024Two‐ and Three‐Spin Hybrid Inorganic‐Organic [2]Rotaxanes Containing Metallated Salen Groups
- 2021High Ammonia Adsorption in MFM-300 Materials:Dynamics and Charge Transfer in Host–Guest Bindingcitations
- 2021Catalytic decomposition of NO 2 over a copper-decorated metal–organic framework by non-thermal plasmacitations
- 2021High Ammonia Adsorption in MFM-300 Materialscitations
- 2021Catalytic decomposition of NO2 over a copper-decorated metal–organic framework by non-thermal plasmacitations
- 2021Catalytic decomposition of NO2 over a copper-decorated metal–organic framework by non-thermal plasmacitations
- 2020Quantitative Electro-Reduction of CO2 to Liquid Fuel over Electro-Synthesized Metal-Organic Frameworkscitations
- 2020Quantitative Electro-Reduction of CO2 to Liquid Fuel over Electro-Synthesized Metal-Organic Frameworkscitations
- 2019Iodine adsorption in a redox-active metal-organic frameworkcitations
- 2016Emergence of comparable covalency in isostructural cerium(IV)- and uranium(IV)-carbon multiple bondscitations
- 2015Copper Lanthanide Phosphonate Cages: Highly Symmetric {Cu(3)Ln(9)P(6)} and {Cu(6)Ln(6)P(6)} Clusters with C-3v and D-3h Symmetrycitations
- 2007Tuning intermolecular magnetic exchange interactions in the solids C xF2x(CNSSS)2(AsF6)2: Structural, EPR, and magnetic characterization of dimeric (x = 2, 4) diradicalscitations
- 2006Incorporation of fused tetrathiafulvalenes (TTFs) into polythiophene architectures: Varying the electroactive dominance of the TTF species in hybrid systemscitations
Places of action
Organizations | Location | People |
---|
article
Quantitative Electro-Reduction of CO2 to Liquid Fuel over Electro-Synthesized Metal-Organic Frameworks
Abstract
<p>Efficient electro-reduction of CO2 over metal-organic framework (MOF) materials is hindered by the poor contact between thermally synthesized MOF particles and the electrode surface, which leads to low Faradaic efficiency for a given product and poor electrochemical stability of the catalyst. We report a MOF-based electrode prepared via electro-synthesis of MFM-300(In) on an indium foil, and its activity for the electrochemical reduction of CO2 is assessed. The resultant MFM-300(In)-e/In electrode shows a 1 order of magnitude improvement in conductivity compared with that for MFM-300(In)/carbon-paper electrodes. MFM-300(In)-e/In exhibits a current density of 46.1 mA cm-2 at an applied potential of -2.15 V vs Ag/Ag+ for the electro-reduction of CO2 in organic electrolyte, achieving an exceptional Faradaic efficiency of 99.1% for the formation of formic acid. The facile preparation of the MFM-300(In)-e/In electrode, coupled with its excellent electrochemical stability, provides a new pathway to develop efficient electro-catalysts for CO2 reduction.</p>