People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Infante, Ivan
Basque Center for Materials, Applications and Nanostructures
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Ultrafast nanocomposite scintillators based on Cd-enhanced CsPbCl$_3$ nanocrystals in polymer matrixcitations
- 2024Ultrafast Nanocomposite Scintillators Based on Cd-Enhanced CsPbCl3 Nanocrystals in Polymer Matrixcitations
- 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Aminescitations
- 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Aminescitations
- 2024Lead‐free halide perovskite materials and optoelectronic devices: progress and prospectivecitations
- 2023Lead-Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospectivecitations
- 2023Light Emission from Low‐Dimensional Pb‐Free Perovskite‐Related Metal Halide Nanocrystalscitations
- 2023Lead‐Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospectivecitations
- 2022Classical Force-Field Parameters for CsPbBr3Perovskite Nanocrystalscitations
- 2022Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystalscitations
- 2022Cu+→ Mn2+ Energy Transfer in Cu, Mn Coalloyed Cs3ZnCl5Colloidal Nanocrystalscitations
- 2022Classical Force-Field Parameters for CsPbBr 3 Perovskite Nanocrystalscitations
- 2021Sb-Doped Metal Halide Nanocrystals: A 0D versus 3D Comparisoncitations
- 2021Halide Perovskite-Lead Chalcohalide Nanocrystal Heterostructurescitations
- 2021Halide Perovskite-Lead Chalcohalide Nanocrystal Heterostructurescitations
- 2020Alloy CsCd x Pb 1- x Br 3 Perovskite Nanocrystals:The Role of Surface Passivation in Preserving Composition and Blue Emissioncitations
- 2020Nanocrystals of Lead Chalcohalides:A Series of Kinetically Trapped Metastable Nanostructurescitations
- 2020Alloy CsCd x Pb1-x Br3 Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emissioncitations
- 2020Alloy CsCd xPb1- xBr3Perovskite Nanocrystalscitations
- 2020Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplateletscitations
- 2020Near-edge ligand stripping and robust radiative exciton recombination in CdSe/CdS core/crown nanoplateletscitations
- 2020Nanocrystals of Lead Chalcohalidescitations
- 2020Cs 3 Cu 4 In 2 Cl 13 Nanocrystals:A Perovskite-Related Structure with Inorganic Clusters at A Sitescitations
- 2020Cs3Cu4In2Cl13 Nanocrystalscitations
- 2019Role of Surface Reduction in the Formation of Traps in n-Doped II-VI Semiconductor Nanocrystals: How to Charge without Reducing the Surfacecitations
- 2019Ruthenium-Decorated Cobalt Selenide Nanocrystals for Hydrogen Evolutioncitations
- 2019Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystalscitations
- 2019Role of Surface Reduction in the Formation of Traps in n-Doped II-VI Semiconductor Nanocrystalscitations
- 2019Stable Ligand Coordination at the Surface of Colloidal CsPbBr 3 Nanocrystalscitations
- 2019Stable Ligand Coordination at the Surface of Colloidal CsPbBr3 Nanocrystalscitations
- 2018Finding and Fixing Traps in II-VI and III-V Colloidal Quantum Dotscitations
- 2018Finding and Fixing Traps in II-VI and III-V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivationcitations
- 2018The Phosphine Oxide Route toward Lead Halide Perovskite Nanocrystalscitations
- 2018Finding and Fixing Traps in II-VI and III-V Colloidal Quantum Dots:The Importance of Z-Type Ligand Passivationcitations
- 2018Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halidescitations
- 2016Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlatticescitations
- 2016Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlatticescitations
- 2016Surface Termination, Morphology and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystalscitations
- 2016Surface Termination, Morphology and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystalscitations
Places of action
Organizations | Location | People |
---|
article
Nanocrystals of Lead Chalcohalides
Abstract
<p>We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.</p>