People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ho-Baillie, Anita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Surface saturation current densities of perovskite thin films from Suns‐photoluminescence quantum yield measurementscitations
- 2023Decoupling Bimolecular Recombination Mechanisms in Perovskite Thin Films Using Photoluminescence Quantum Yield
- 2023Surface Saturation Current Densities of Perovskite Thin Films from Suns-Photoluminescence Quantum Yield Measurements
- 2021Silicate glass-to-glass hermetic bonding for encapsulation of next-generation optoelectronicscitations
- 2021Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenchingcitations
- 2021Integrating low-cost earth-abundant co-catalysts with encapsulated perovskite solar cells for efficient and stable overall solar water splittingcitations
- 2020Transparent electrodes consisting of a surface-treated buffer layer based on tungsten oxide for semitransparent perovskite solar cells and four-terminal tandem applicationscitations
- 2020Unveiling the relationship between the perovskite precursor solution and the resulting device performancecitations
- 2018Scaling limits to large area perovskite solar cell efficiencycitations
- 2017Impact of microstructure on the electron-hole interaction in lead halide perovskitescitations
- 2017A life cycle assessment of perovskite/silicon tandem solar cellscitations
- 2017A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modulescitations
- 2017Spatial distribution of lead iodide and local passivation on organo-lead halide perovskitecitations
- 2016Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometrycitations
- 2015Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskitescitations
- 2015Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devicescitations
Places of action
Organizations | Location | People |
---|
article
Unveiling the relationship between the perovskite precursor solution and the resulting device performance
Abstract
<p>For the fabrication of perovskite solar cells (PSCs) using a solution process, it is essential to understand the characteristics of the perovskite precursor solution to achieve high performance and reproducibility. The colloids (iodoplumbates) in the perovskite precursors under various conditions were investigated by UV-visible absorption, dynamic light scattering, photoluminescence, and total internal reflection fluorescence microscopy techniques. Their local structure was examined by in situ X-ray absorption fine structure studies. Perovskite thin films on a substrate with precursor solutions were characterized by transmission electron microscopy, X-ray diffraction analysis, space-charge-limited current, and Kelvin probe force microscopy. The colloidal properties of the perovskite precursor solutions were found to be directly correlated with the defect concentration and crystallinity of the perovskite film. This work provides guidelines for controlling perovskite films by varying the precursor solution, making it possible to use colloid-engineered lead halide perovskite layers to fabricate efficient PSCs.</p><p>[Graphic presents]<br/></p>