Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murillo, C. A.

  • Google
  • 1
  • 6
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Effects of Weak Intermolecular Interactions on the Molecular Isomerism of Tricobalt Metal Chains31citations

Places of action

Chart of shared publication
Spackman, Mark A.
1 / 11 shared
Ostergaard, C.
1 / 1 shared
Iversen, B. B.
1 / 3 shared
Poulsen, R. D.
1 / 1 shared
Overgaard, J.
1 / 1 shared
Schulman, A.
1 / 2 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Spackman, Mark A.
  • Ostergaard, C.
  • Iversen, B. B.
  • Poulsen, R. D.
  • Overgaard, J.
  • Schulman, A.
OrganizationsLocationPeople

article

Effects of Weak Intermolecular Interactions on the Molecular Isomerism of Tricobalt Metal Chains

  • Spackman, Mark A.
  • Ostergaard, C.
  • Murillo, C. A.
  • Iversen, B. B.
  • Poulsen, R. D.
  • Overgaard, J.
  • Schulman, A.
Abstract

Depending on the number of interstitial solvent molecules, n, crystals of the linear chain compound Co3(dipyridylamide)4Cl2•nCH2Cl2 adopt either symmetrical or unsymmetrical metal chain structures. We explore here the possible reasons for such behavior using Hirshfeld surface analysis of intermolecular interactions as well as the charge density determined from 100(1) K X-ray diffraction data on the unsymmetrical complex Co3(dipyridylamide)4Cl2•2.11CH2Cl2, u-1, and crystal structures of u-1 determined from single crystal synchrotron X-ray diffraction data at 20, 150, and 300 K. The new crystal structures are compared with previous structural results on a crystal with slightly different solvent content. This change in solvent content only affects the bond distances to atom Co(3), which are also strongly affected by temperature changes due to a spin crossover transition. Large differences in intermolecular interactions are revealed by the Hirshfeld surface analysis between symmetrical (s-1) and unsymmetrical (u-1) crystal solvates, suggesting that the molecular isomerism is strongly influenced by crystal packing effects. Topological analysis of the static electron density of u-1 suggests that there is direct metal−metal bonding for both the shorter Co(1)−Co(2) and the longer Co(2)−Co(3) contact. The approximate description of the system as a (Co2)2+-dimer and an isolated Co2+-ion is reflected in the character of the metal−ligand interactions, which are more ionic for the isolated Co(3) atom, and the topological charges Co(1)+0.50, Co(2)+0.77, and Co(3)+1.36. The two termini of u-1 are found to be very different, both in terms of structural surroundings as well as topology. The central Co(2) atom is similar to a cobalt atom in a tetragonally distorted octahedral environment resulting in preferred occupancy in the t2g orbitals. The Co(1) atom has significant deformation in the xz and yz planes (z along the chain axis, x and y toward ligands) reflecting covalent interactions with the terminal chlorine atom Cl(1). The Co(3) atom has a relatively high occupancy of the dx2−y2 orbital and a relatively low occupancy of the dxy orbital confirming that these orbitals are involved in the spin crossover process and predominantly responsible for the observed variation in bond lengths with temperature.

Topics
  • density
  • impedance spectroscopy
  • surface
  • compound
  • single crystal
  • x-ray diffraction
  • cobalt
  • interstitial